🔊 🔴 New sounds from Mars: NASA’s Perseverance Mars Rover caught the beats coming from our Ingenuity # MarsHelicopter! This marks the first time a spacecraft on another planet has recorded the sounds of a separate spacecraft.
Have you seen those plant trees instead of go to space memes recently? Well, aside from believing we can do both, I wanted to remind people what great things we use everyday due to the technological developments that the space race has spawned. Not least, the monitoring of illegal deforestation, but right through to better baby food, cleaner water and incredible digital cameras!! But that is not all, so here is my Top 10 technologies, that we have the space industry to thank for…
For the first time, a spacecraft on another planet has recorded the sounds of a separate spacecraft. NASA’s Perseverance Mars rover used one of its two microphones to listen as the Ingenuity helicopter flew for the fourth time on April 30, 2021. A new video combines footage of the solar-powered helicopter taken by Perseverance’s Mastcam-Z imager with audio from a microphone belonging to the rover’s SuperCam laser instrument.
The laser zaps rocks from a distance, studying their vapor with a spectrometer to reveal their chemical composition. The instrument’s microphone records the sounds of those laser strikes, which provide information on the physical properties of the targets, such as their relative hardness. The microphone can also record ambient noise, like the Martian wind.
With Perseverance parked 262 feet (80 meters) from the helicopter’s takeoff and landing spot, the rover mission wasn’t sure if the microphone would pick up any sound of the flight. Even during flight, when the helicopter’s blades spin at 2537 rpm, the sound is greatly muffled by the thin Martian atmosphere. It is further obscured by Martian wind gusts during the initial moments of the flight. Listen closely, though, and the helicopter’s hum can be heard faintly above the sound of those winds.
Astronomers spent decades looking for objects from outside our own solar system. Then two arrived at once. When should we expect the next one? And what can they teach us?
For millennia, humans in the high latitudes have been enthralled by auroras—the northern and southern lights. Yet even after all that time, it appears the ethereal, dancing ribbons of light above Earth still hold some secrets.
In a new study, physicists led by the University of Iowa report a new feature to Earth’s atmospheric light show. Examining video taken nearly two decades ago, the researchers describe multiple instances where a section of the diffuse aurora —the faint, background-like glow accompanying the more vivid light commonly associated with auroras—goes dark, as if scrubbed by a giant blotter. Then, after a short period of time, the blacked-out section suddenly reappears.
The researchers say the behavior, which they call “diffuse auroral erasers,” has never been mentioned in the scientific literature. The findings appear in the Journal of Geophysical Research Space Physics.
On May 6, 2021 NASA published 4K UHD image from Ingenuity Mars Helicopter’s onboard camera and video footage during flight at Airfield B. Successful 4th flight on Mars for 133 meters distance by Ingenuity happened on April 30. New Ingenuity’s location called Airfield B. Previous location is Wright Brothers Field. The helicopter climbing to an altitude of 16 feet (5 meters) before flying south approximately 436 feet (133 meters) and then back, for an 872-foot (266-meter) round trip. In total, we were in the air for 117 seconds. NASA’s Ingenuity Mars Helicopter’s fourth flight path is superimposed here atop terrain imaged by the HiRISE camera aboard the agency’s Mars Reconnaissance Orbiter. NASA’s Ingenuity Mars Helicopter took 4K color image during its fourth flight. “Airfield B,” its new landing site, can be seen below. The helicopter will seek to set down there on its fifth flight attempt to 10 meters altitude on May 7th.
If we ever found life on another planet it would probably be the biggest news of the millennium, and you’d expect the evidence to be published in a highly prestigious journal like Nature or Science. So, when a study claiming that mushrooms are growing on Mars appears in an obscure and largely discredited publication, you have to be more than a little skeptical.
Earlier this week, a preprint of a new study appeared online, bearing the eyebrow-raising title Fungi on Mars? Evidence of Growth and Behavior From Sequential Images. Unfortunately, the paper is due for publication in the journal Advances in Microbiology, which is part of the Scientific Research Publishing (SCIRP) portfolio. Given that SCIRP has a history of plagiarizing articles from other journals, it’s pretty difficult to take any of its content seriously.
The study itself comprises an analysis of images taken by NASA’s Opportunity and Curiosity rovers, which have been carrying out observations on the Red Planet, in addition to photographs taken by the Mars Reconnaissance Orbiter. Using red circles and arrows to highlight certain features, the study authors point out a series of structures that look a lot like rocks but also maybe a tiny bit like puffball mushrooms.
Physics has long looked to harmony to explain the beauty of the Universe. But what if dissonance yields better insights?
Quantum physics is weird and counterintuitive. For this reason, the word ‘quantum’ has become shorthand for anything powerful or mystical, whether or not it has anything whatsoever to do with quantum mechanics. As a quantum physicist, I’ve developed a reflexive eyeroll upon hearing the word applied to anything outside of physics. It’s used to describe homeopathy, dishwasher detergents and deodorant.
If I hadn’t first heard of Quantum Music from a well-respected physicist, I would have scoffed the same way I did at the other ridiculous uses of the word. But coming from Klaus Mølmer it was intriguing. In the Quantum Music project, physicists and musicians worked together to unite ‘the mysterious worlds of quantum physics and music for the first time’. They developed a device that attaches to each key of a piano so that, when the pianist plays, the information is piped to a computer and synthesiser, which plays ‘quantum’ tones in addition to the familiar reverberations in the piano.
Among the tones used are those that represent a very quantum object: a Bose-Einstein condensate (BEC). This is a cloud of atoms that have been cooled down to just above absolute zero. At this low temperature, the microscopic quantum properties of the individual particles can all be treated collectively as a single, macroscopic quantum entity. Studying BECs is a way of examining the consequences of quantum mechanics on a larger scale than is typically possible.
Researchers have demonstrated a record-high laser pulse intensity of over 1023 W/cm2 using the petawatt laser at the Center for Relativistic Laser Science (CoReLS), Institute for Basic Science in the Republic of Korea. It took more than a decade to reach this laser intensity, which is ten times that reported by a team at the University of Michigan in 2004. These ultrahigh intensity light pulses will enable exploration of complex interactions between light and matter in ways not possible before.
The powerful laser can be used to examine phenomena believed to be responsible for high-power cosmic rays, which have energies of more than a quadrillion (1015) electronvolts (eV). Although scientists know that these rays originate from somewhere outside our solar system, how they are made and what is forming them has been a longstanding mystery.
“This high intensity laser will allow us to examine astrophysical phenomena such as electron-photon and photon-photon scattering in the lab,” said Chang Hee Nam, director of CoReLS and professor at Gwangju Institute of Science & Technology. “We can use it to experimentally test and access theoretical ideas, some of which were first proposed almost a century ago.”