An international team of astronomers has gained new insights into the physical conditions prevailing in the gas tail of so-called jellyfish galaxies. They are particularly interested in the parameters that lead to the formation of new stars in the tail outside the galaxy disk. They analyzed, for example, the strength and orientation of the magnetic fields in the galaxy JO206.
Ancla Müller and Professor Ralf-Jürgen Dettmar from Ruhr-Universität Bochum describe their findings together with Professor Christoph Pfrommer and Dr. Martin Sparre from the Leibniz Institute for Astrophysics in Potsdam as well as colleagues from the INAF—Italian national institute of Astrophysics in Padua, Selargius and Bologna in the journal Nature Astronomy from 26 October 2020.
A new study authored by Southwest Research Institute planetary scientist Dr. Tracy Becker discusses several new views of the asteroid 16 Psyche, including the first ultraviolet observations. The study, which was published today in The Planetary Science Journal and presented at the virtual meeting of the American Astronomical Society’s Division for Planetary Sciences, paints a clearer view of the asteroid than was previously available.
At about 140 miles in diameter, Psyche is one of the most massive objects in the main asteroid belt orbiting between Mars and Jupiter. Previous observations indicate that Psyche is a dense, largely metallic object thought to be the leftover core of a planet that failed in formation.
“We’ve seen meteorites that are mostly metal, but Psyche could be unique in that it might be an asteroid that is totally made of iron and nickel,” Becker said. “Earth has a metal core, a mantle and crust. It’s possible that as a Psyche protoplanet was forming, it was struck by another object in our solar system and lost its mantle and crust.”
NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) discovered water on the sunlit surface of the Moon. This discovery indicates that water may be distributed across the lunar surface, and not limited to cold, shadowed places. This water was detected in Clavius Crater, yes the very same crater featured in the movie 2001 a Space Odyssey as the site of the lunar monolith. In reality this crater’s discovery my spur space exploration, development, and settlement. Find out how in this video.
You can support Galactic Gregs by supporting the sister channel Green Gregs by clicking the links below: See the Special Deals at My Patriot Supply (great space mission food): www.PrepWithGreg.com For gardening in your space habitat (or on Earth) Galactic Gregs has teamed up with True Leaf Market to bring you a great selection of seed for your planting. Check it out: http://www.pntrac.com/t/TUJGRklGSkJGTU1IS0hCRkpIRk1K
Like its key allies, the UK is increasingly reliant on space-based assets for daily life in ordinary civil society and for the perfornance of its military forces. So, the Royal Air Force’s operating domain now extends from the ground to far beyond the atmosphere.
In a lockdown summer of downbeat aviation news, it is perhaps fitting that a highlight was a model aeroplane in a windtunnel. In turbulent times for aerospace, that aircraft is even named after a storm. But in showing some detail of the external shape of the Tempest future fighter, BAE Systems has also emphasised the UK’s determination to ride out the technological, financial and geopolitical hurricanes which are set to shape the national defence challenges of the next few decades.
Those late August images from BAE’s Warton, Lancashire test facility reveal an external profile designed for stealth at Mach 2, to carry a wide range of payloads and to cope with the internal heat from enough onboard electric power to anticipate exotic technologies like laser directed-energy weapons.
TESS, the Transiting Exoplanet Survey Satellite, was launched in 2018 with the goal of discovering small planets around the Sun’s nearest neighbors, stars bright enough to allow for follow-up characterizations of their planets’ masses and atmospheres. TESS has so far discovered seventeen small planets around eleven nearby stars that are M dwarfs — stars that are smaller than the Sun (less than about 60% of the Sun’s mass) and cooler (surface temperatures less than about 3900 kelvin). In a series of three papers that appeared together this month, astronomers report that one of these planets, TOI-700d, is Earth-sized and also located in its star’s habitable zone; they also discuss its possible climate.
CfA astronomers Joseph Rodriguez, Laura Kreidberg, Karen Collins, Samuel Quinn, Dave Latham, Ryan Cloutier, Jennifer Winters, Jason Eastman, and David Charbonneau were on the teams that studied TOI-700d, one of three small planets orbiting one M dwarf star (its mass is 0.415 solar masses) located one hundred and two light-years from Earth. The TESS data analysis found the tentative sizes of the planets as being approximately Earth-sized, 1.04, 2.65 and 1.14 Earth-radii, respectively, and their orbital periods as 9.98, 16.05, and 37.42 days, respectively.
If humans want to travel about the solar system, they’ll need to be able to communicate. As we look forward to crewed missions to the Moon and Mars, communication technology will pose a challenge we haven’t faced since the 1970s.
We communicate with robotic missions through radio signals. It requires a network of large radio antennas to do this. Spacecraft have relatively weak receivers, so you need to beam a strong radio signal to them. They also transmit relatively weak signals back. You need a large sensitive radio dish to capture the reply. For spacecraft beyond the orbit of Earth, this is done through the Deep Space Network (DSN), which is a collection of radio telescopes custom designed for the job.
The only major crewed mission we currently have is the International Space Station (ISS). Since the ISS orbits only about 400 kilometers above the Earth, it’s relatively easy to send radio signals back and forth. But as humans travel deeper into space, we’ll require a Deep Space Network far more powerful than the current one. The DSN is already being pushed to its data limits, given the large number of active missions. Human missions would require orders of magnitude more bandwidth.
Oct. 22 (UPI) — Chief of Space Operations Gen. Jay Raymond established Space Operations Command during an activation ceremony at Peterson Air Force Base in Colorado this week.
According to the Space Force, Lt. Gen. Stephen Whiting will serve as commander of the new unit, which is mostly formed from former Air Force units 14th Air Force and Air Force Space Command.
At the ceremony Wednesday, Raymond and Whiting both talked about the decades of work that made the new organization possible, and the role of that history in preparing warfighters for space.
Will astronauts have fungi shields as protection against radiation in the future? 😃
When astronauts return to the moon or travel to Mars, how will they shield themselves against high levels of cosmic radiation? A recent experiment aboard the International Space Station suggests a surprising solution: a radiation-eating fungus, which could be used as a self-replicating shield against gamma radiation in space.