Toggle light / dark theme

Understanding where Earth’s essential elements came from—and why some are missing—has long puzzled scientists. Now, a new study reveals a surprising twist in the story of our planet’s formation.

A new study led by Arizona State University’s Assistant Professor Damanveer Grewal from the School of Molecular Sciences and School of Earth and Space Exploration, in collaboration with researchers from Caltech, Rice University, and MIT, challenges traditional theories about why Earth and Mars are depleted in moderately volatile elements (MVEs).

MVEs like copper and zinc play a crucial role in planetary chemistry, often accompanying life-essential elements such as water, carbon, and nitrogen. Understanding their origin provides vital clues about why Earth became a habitable world. Earth and Mars contain significantly fewer MVEs than primitive meteorites (chondrites), raising fundamental questions about planetary formation.

A large team of researchers working on the Alpha Magnetic Spectrometer Collaboration, which has been analyzing eleven years’ worth of data from the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station, has found trends in the number of particles moving around in the heliosphere and in the way they interact with one another.

The team has published two papers in the journal Physical Review Letters; one describing trends they found surrounding antiproton and elementary particle behavior over a single and the other covering solar modulation of cosmic nuclei behavior, also over a single solar cycle.

Prior research has shown that the sun follows a cycle that repeats itself every 11 years. The AMS has been running for more than 11 years, but the researchers working on both efforts focused on conditions during just one cycle. They wanted to know how the sun impacted energy particles in the and beyond.

The study of ‘starquakes’ (like earthquakes, but in stars) promises to give us important new insights into the properties of neutron stars (the collapsed remnants of massive stars), according to new research led by the University of Bath in the UK.

Such explorations have the potential to challenge our current approaches to studying , with important impacts for the future of both nuclear physics and astronomy. Longer term, there may also be implications in the fields of health, security and energy.

The value of studying asteroseismology—as these vibrations and flares are known—has emerged from research carried out by an international team of physicists that includes Dr. David Tsang and Dr. Duncan Neill from the Department of Physics at Bath, along with colleagues from Texas A&M and the University of Ohio.

New research shows that meteoroid impacts on Mars.

Mars is the second smallest planet in our solar system and the fourth planet from the sun. It is a dusty, cold, desert world with a very thin atmosphere. Iron oxide is prevalent in Mars’ surface resulting in its reddish color and its nickname “The Red Planet.” Mars’ name comes from the Roman god of war.

They say space is silent, but turn your ears into radio wave receivers and suddenly it is a symphony of sounds. So what does Earth sound like from space?
https://brilliant.org/astrum/

******
A big thank you to Brilliant for supporting this video. Sign up for free using the link above. That link will also get the first 200 subscribers 20% off a premium subscription to the website if you like what you see.
******

0:00 Intro.
2:23 Chorus Waves.
3:25 Whistler Mode Plasma Waves.
5:01 Dawn Chorus Waves.
5:46 Hiss Waves.
6:25 Sponsor message.
7:10 Outro.

SUBSCRIBE for more videos about our other planets.

Is it possible to understand the Universe without understanding the largest structures that reside in it? In principle, not likely.

In practical terms? Definitely not. Extremely large objects can distort our understanding of the cosmos.

Astronomers have found the largest structure in the Universe so far, named Quipu after an Incan measuring system. It contains a shocking 200 quadrillion solar masses.

What can sand dunes on Earth and Mars teach us about the latter’s wind behavior and atmosphere? This is what a recently awarded NASA grant hopes to address as a PhD student at Texas A&M University will be tasked with analyzing what are known as “compound dunes”, which are large sand dunes that possess smaller dunes compounding on the top, giving the appearance they are “growing” on the top of the larger dunes. While compound dunes have been studied extensively on Earth, this will be the first time they are examined on the Red Planet.

Like sand dunes on Earth, Mars sand dunes are formed from wind processes (also called aeolian processes), which is the primary atmospheric behavior occurring on the Red Planet since its atmospheric pressure is far too low to have liquid water on its surface. Because of this, wind patterns drive sandstorms and dust storms, often encircling the entire planet and preventing sunlight from reaching the surface.

“The shape and pattern of these aeolian bedforms—geologic features shaped by wind—can tell us so much about the environment,” said Lauren Berger, who is the recipient of the NASA grant. “By comparing compound dunes on Mars to those on Earth, we can uncover similarities and differences that could help us better understand the Martian surface and atmosphere.”

“This was a serendipitous discovery,” said Imad Pasha.


How many rings can galaxies have? This is what a recent study published in The Astrophysical Journal Letters hopes to address as an international team of researchers discovered a unique galaxy with nine rings, possessing six more rings than any known galaxy, that they aptly named the Bullseye Galaxy. This study has the potential to help researchers better understand the formation and evolution of galaxies throughout the universe, potentially resulting in identifying where we could find life.

The Bullseye Galaxy is known as a collisional ring galaxy (CRG) and whose radius is approximately 70 kiloparsecs (228,309 light-years), which is two and a half times larger than our Milky Way Galaxy, which is known as a spiral galaxy. After significant image analysis from NASA’s Hubble Space Telescope and the W. M. Keck Observatory, the researchers estimate the Bullseye Galaxy was created approximately 50 million years ago when a smaller blue dwarf galaxy collided with the center of the former, resulting in nine giant rings like ripples being created when a pebble is dropped in a water.

Three months after its launch from NASA’s Kennedy Space Center in Florida, the agency’s Europa Clipper has another 1.6 billion miles (2.6 billion kilometers) to go before it reaches Jupiter’s orbit in 2030 to take close-up images of the icy moon Europa with science cameras.

Meanwhile, a set of cameras serving a different purpose is snapping photos in the space between Earth and Jupiter. Called star trackers, the two imagers look for stars and use them like a compass to help mission controllers know the exact orientation of the spacecraft—information critical for pointing telecommunications antennas toward Earth and sending data back and forth smoothly.

In early December, the pair of star trackers (formally known as the stellar reference units) captured and transmitted Europa Clipper’s first imagery of space. The picture, composed of three shots, shows tiny pinpricks of light from stars 150 to 300 light-years away. The starfield represents only about 0.1% of the full sky around the spacecraft, but by mapping the stars in just that small slice of sky, the orbiter is able to determine where it is pointed and orient itself correctly.

The advent of quantum simulators in various platforms8,9,10,11,12,13,14 has opened a powerful experimental avenue towards answering the theoretical question of thermalization5,6, which seeks to reconcile the unitarity of quantum evolution with the emergence of statistical mechanics in constituent subsystems. A particularly interesting setting is that in which a quantum system is swept through a critical point15,16,17,18, as varying the sweep rate can allow for accessing markedly different paths through phase space and correspondingly distinct coarsening behaviour. Such effects have been theoretically predicted to cause deviations19,20,21,22 from the celebrated Kibble–Zurek (KZ) mechanism, which states that the correlation length ξ of the final state follows a universal power-law scaling with the ramp time tr (refs. 3, 23,24,25).

Whereas tremendous technical advancements in quantum simulators have enabled the observation of a wealth of thermalization-related phenomena26,27,28,29,30,31,32,33,34,35, the analogue nature of these systems has also imposed constraints on the experimental versatility. Studying thermalization dynamics necessitates state characterization beyond density–density correlations and preparation of initial states across the entire eigenspectrum, both of which are difficult without universal quantum control36. Although digital quantum processors are in principle suitable for such tasks, implementing Hamiltonian evolution requires a high number of digital gates, making large-scale Hamiltonian simulation infeasible under current gate errors.

In this work, we present a hybrid analogue–digital37,38 quantum simulator comprising 69 superconducting transmon qubits connected by tunable couplers in a two-dimensional (2D) lattice (Fig. 1a). The quantum simulator supports universal entangling gates with pairwise interaction between qubits, and high-fidelity analogue simulation of a U symmetric spin Hamiltonian when all couplers are activated at once. The low analogue evolution error, which was previously difficult to achieve with transmon qubits due to correlated cross-talk effects, is enabled by a new scalable calibration scheme (Fig. 1b). Using cross-entropy benchmarking (XEB)39, we demonstrate analogue performance that exceeds the simulation capacity of known classical algorithms at the full system size.