Toggle light / dark theme

An interest in understanding the role that the Milky Way played in Egyptian culture and religion has led University of Portsmouth Associate Professor of Astrophysics, Dr. Or Graur to uncover what he thinks may be the ancient Egyptian visual depiction of the Milky Way.

Various Egyptian gods are either associated with, symbolize, or directly embody certain . In his study, Dr. Graur reviewed 125 images of the sky-goddess Nut (pronounced “Noot”), found among 555 ancient Egyptian coffins dating back nearly 5,000 years.

Combining astronomy with Egyptology, he analyzed whether she could be linked to the Milky Way and his findings are now published in the Journal of Astronomical History and Heritage.

“My findings in this study fit with the thought that the Universe might work like a giant computer, or our reality is a simulated construct,” Dr. Vopson said.

“Just like computers try to save space and run more efficiently, the Universe might be doing the same.”

“It’s a new way to think about gravity — not just as a pull, but as something that happens when the Universe is trying to stay organized.”

Two new research studies explore how a stellar nursery in the heart of the Milky Way is affected by the region’s strong magnetic fields. Despite decades of research, the process of how stars form is still filled with unanswered questions. Because stars create nearly all the chemical elements in the

If we were living in a computer simulation, would we be able to tell we were living in a computer simulation? It’s a question that’s difficult to answer, but physicist Melvin Vopson of the University of Portsmouth in the UK believes that he may have found a clue.

According to his latest study, gravity could be a product of computational processes within the Universe, a by-product of the Universe’s attempt to keep information and matter neatly organized in space and time.

“My findings in this study fit with the thought that the Universe might work like a giant computer, or our reality is a simulated construct,” Vopson says.

By analyzing the data from the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have investigated a star-forming region known as G34.26+0.15. As a result, they discovered an explosive outflow in this complex. The study was reported in a paper published on April 22 on the arXiv preprint server.

Astronomers have discovered a previously unknown birthplace of some of the universe’s rarest elements: a giant flare unleashed by a supermagnetized star. The astronomers calculated that such flares could be responsible for forging up to 10% of our galaxy’s gold, platinum and other heavy elements.

The discovery also resolves a decades-long mystery concerning a bright flash of light and particles spotted by a space telescope in December 2004. The light came from a magnetar—a type of star wrapped in magnetic fields trillions of times as strong as Earth’s—that had unleashed a giant .

The powerful blast of radiation only lasted a few seconds, but it released more energy than the sun does in 1 million years. While the flare’s origin was quickly identified, a second, smaller signal from the star, peaking 10 minutes later, confounded scientists at the time. For 20 years, that signal went unexplained.