Some prime examples of how humanity’s expected return to the lunar surface in the years to come could help life here on Earth.
“That’s one small step for man; one giant leap for mankind.”
This July 20th marks fifty years since Neil Armstrong, mission commander of NASA’s Apollo 11, uttered those famous words. Much less discussed is how Project Apollo shifted lunar science into high gear, ultimately teaching scientists just how valuable the Moon could become.
Part 2 of the Life in Space with COVID19 we will delve into Crew demo-2 where NASA and SpaceX are planning a launch within two months. There are a lot of pre-launch milestones and activities to cover to ensure a safe flight for the Astronauts. If anything goes wrong, there are lives at stake. Now NASA and SpaceX have to contend with another potential setback, COVID19 pandemic. (Click here for part I)
WestEastSpace mapped out NASA locations on a map of COVID19 impacted areas of USA from www.usafacts.org as of March 23rd, 2020With the launch window for NASA’s Mars Perseverance rover opening in a little less than four months, there are nearly daily pre-launch milestones to complete the rover pre flight activities at the Kennedy Space Center in Cape Canaveral, Florida. Tight schedules on complex missions usually do not mix well. Now NASA has to contend with another challenge. COVID19.
NASA Leadership Assessing Mission Impacts of Coronavirus
Dr. Ezekiel Emanuel, an American oncologist and bioethicist who is senior fellow at the Center for American Progress as well as Vice Provost for Global Initiatives at the University of Pennsylvania and chair of the Department of Medical Ethics and Health Policy, said on MSNBC on Friday, March 20, that Tesla and SpaceX CEO Elon Musk told him it would probably take 8–10 weeks to get ventilator production started at his factories (he’s working on this at Tesla and SpaceX).
I reached out to Musk for clarification on that topic and he replied that, “We have 250k N95 masks. Aiming to start distributing those to hospitals tomorrow night. Should have over 1000 ventilators by next week.” With medical supplies such as these being one of the biggest bottlenecks and challenges at the moment in the COVID-19 response in the United States (as well as elsewhere) — something that is already having a very real effect on medical professionals and patient care — the support will surely be received with much gratitude. That said, while there has been much attention put on the expected future need for ventilators, very few places reportedly have a shortage of them right now. In much greater need at the moment are simpler supplies like N95 masks, which must be why Tesla/SpaceX is providing 250,000 of them.
Dr. Emanuel also said in the segment of MSNBC’s “Morning Joe” he was on that we probably need 8–12 weeks (2–3 months) of social distancing in the US in order to deal with COVID-19 as a society. However, he also expects that the virus will come back and we’ll basically have a roller coaster of “social restrictions, easing up, social restrictions, easing up … to try to smooth out the demand on the health care system.”
When it comes to space, there’s a problem with our human drive to go all the places and see all the things. A big problem. It’s, well, space. It’s way too big. Even travelling at the maximum speed the Universe allows, it would take us years to reach our nearest neighbouring star.
But another human drive is finding solutions to big problems. And that’s what NASA engineer David Burns has been doing in his spare time. He’s produced an engine concept that, he says, could theoretically accelerate to 99 percent of the speed of light — all without using propellant.
He’s posted it to the NASA Technical Reports Server under the heading “Helical Engine”, and, on paper, it works by exploiting the way mass can change at relativistic speeds — those close to the speed of light in a vacuum. It has not yet been reviewed by an expert.
Essentially this can lead to euclidean geometry in programming essentially allowing near infinite decompression either in programming or in devices or even spaceships.
As an irrotational vector field has a scalar potential and a solenoidal vector field has a vector potential, the Helmholtz decomposition states that a vector field (satisfying appropriate smoothness and decay conditions) can be decomposed as the sum of the form − ∇ ϕ + ∇ × A {\displaystyle -\nabla \phi +\nabla \times \mathbf {A} }, where ϕ {\displaystyle \phi } is a scalar field called “scalar potential”, and A is a vector field, called a vector potential.