Toggle light / dark theme

Could We Explore the Entire Galaxy With Self-Replicating Robots?

Circa 2016


Scientists and engineers since the 1940s have been toying with the idea of building self-replicating machines, or von Neumann machines, named for John von Neumann. With recent advances in 3D printing (including in zero gravity) and machine learning AI, it seems like self-replicating machines are much more feasible today. In the 21st century, a tantalizing possibility for this technology has emerged: sending a space probe out to a different star system, having it mine resources to make a copy of itself, and then launching that one to yet another star system, and on and on and on.

As a wild new episode of PBS’s YouTube series Space Time suggests, if we could send a von Neumann probe to another star system—likely Alpha Centauri, the closest to us at about 4.4 light years away—then that autonomous spaceship could land on a rocky planet, asteroid, or moon and start building a factory. (Of course, it’d probably need a nuclear fusion drive, something we still need to develop.)

That factory of autonomous machines could then construct solar panels, strip mine the world for resources, extract fuels from planetary atmospheres, build smaller probes to explore the system, and eventually build a copy of the entire von Neumann spacecraft to send off to a new star system and repeat the process. It has even been suggested that such self-replicating machines could build a Dyson sphere to harness energy from a star or terraform a planet for the eventual arrival of humans.

Vortex Bladeless wind turbines generate electricity from the vibration

Wind farms certainly allow for the production of clean energy. Although they are 100% renewable, they still have problems. They have high costs, disfigure the landscape, produce noise pollution, and above all, have a heavy impact on fauna, and in particular on birds.

The Spanish startup Vortex Bladeless has developed a bladeless turbine that can revolutionize wind energy, especially at the household level, and become the alternative to solar panels. The design of the Spanish firm has already received the approval of Norway’s state energy company, Equinor.

The new turbine, which has also been called the “Skybrator” due to its phallic shape, is capable of harnessing energy from winds without the sweeping white blades everyone associates with wind power. It generates wind energy thanks to vibration and without generating the environmental and visual impact on the fauna of the large wind farms.

Caltech’s New Space-Based Solar Project Could Power Our Entire Planet /

It’s the stuff of science fiction: Solar panels in space that beam power directly to Earth equipping the planet with clean renewable and affordable energy. Yet, it could soon be reality.

Caltech has just received $100 million in funding for their Space Solar Power Project (SSPP). The project is described by Caltech as: “Collecting solar power in space and transmitting the energy wirelessly to Earth through microwaves enables terrestrial power availability unaffected by weather or time of day. Solar power could be continuously available anywhere on earth.”

“This ambitious project is a transformative approach to large-scale solar energy harvesting for the Earth that overcomes this intermittency and the need for energy storage,” said SSPP researcher Harry Atwater in the Caltech press release on the matter.

U.S. Navy is developing a solar-powered plane that can fly for 90 days straight

The aircraft, evocatively called Skydweller and built by a U.S.-Spanish aerospace firm Skydweller Aero, could help the Navy keep a watchful eye on the surrounding seas while escorting ships months at a time or act as a communications relay platform. The company was awarded a $5 million contract by the U.S. Navy to develop the aircraft.


To stay airborne for so long, the pilotless craft would have 2900sq ft of solar cells on its wings.

Maana Electric’s TerraBox turns sand and electricity into solar panels

This could revolutionize the way solar panels are produced on Earth and in space. The solar panel manufacturing process also releases oxygen as a by-product, which could be used by future astronauts to create breathable environments in space.


The Luxembourg-based startup Maana Electric will soon be testing its TerraBox, a fully automated factory the size of several shipping containers that takes sand and produces solar panels. The company aims to send these small warehouse container-like boxes, capable of building solar panels using only electricity and sand as inputs, to the deserts of the Earth, in order to contribute to the fight against climate change.

If all goes according to the plans, the technology could reach the Moon, Mars, and beyond as well to help future space colonies meet their energy needs. The TerraBox fits within shipping containers, allowing the mini-factories to be transported to deserts across the globe and produce clean, renewable energy.

In addition to contributing to the fight against climate change, this potentially revolutionary product could also help reduce the dependence of renewable energy operators on China, which manufactures the majority of the world’s photovoltaic solar panels.

Engineers develop a simple way to desalinate water using solar energy

Distillation of water using solar energy is considered one of the most popular desalination methods today.

Power engineers at Ural Federal University (UrFU), together with colleagues from Iraq, have developed a new desalination technology, which is claimed to be much more effective than others, by incorporating a rotating cylinder. The method proposed by the UrFU power engineers will significantly reduce the cost of desalination and will increase production volumes by four times.

The experimental new solar distiller incorporates a rectangular basin, inside of which is a horizontally oriented black steel cylinder. The basin is filled with undrinkable water, and the cylinder is slowly rotated by a solar-powered DC motor.

World’s first home hydrogen battery powers an average home for two days

The Australian company LAVO has developed a hydrogen storage system for domestic solar systems. It is the world’s first integrated hybrid hydrogen battery that combines with rooftop solar to deliver sustainable, reliable, and renewable green energy to your home and business. Developed in partnership with UNSW, Sydney, Australia, and Design + Industry, the Hydrogen Battery System from LAVO consists of an electrolysis system, hydrogen storage array, and fuel cell power system rolled into one attractive cabinet. When the electricity from the solar system on the roof is not needed, it is stored in the form of hydrogen. This then serves as fuel for the fuel cell when the solar system is not supplying electricity.


However, LAVO’s hydrogen hybrid battery delivers a continuous output of 5 kW and stores over 40kWh of electricity – enough to power the average Australian home for two days on a single charge. The system is designed to easily integrate with existing solar panels, creating a significant opportunity for LAVO to have an immediate and notable impact. There are Wi-Fi connectivity and a phone app for monitoring and control, and businesses with higher power needs can run several in parallel to form an intelligent virtual power plant.

Hydrogen is often incorrectly seen as an unsafe fuel, usually due to the 1937 Hindenburg disaster. However, the company says any leaks will disperse quickly, though, making it inherently no more dangerous than other conventional fuels such as gasoline or natural gas. This innovation has a lifespan of approximately 30 years, which is three times longer than that of lithium batteries, thanks to its reliance on hydrogen gas rather than the chemicals in a conventional battery.

According to the manufacturer, LAVO’s hydrogen storage should be ready for installation by the middle of this year. It costs AU$34750 (US$26900) for the first 2500 units and will require a fully refundable deposit to secure your LAVO pre-order. In the coming year, the price is expected to drop to AU$29450 (US$22800).

/* */