Toggle light / dark theme

In energy policy debates, nuclear energy and renewable energy technologies are sometimes viewed as competitors.

In reality, they could be better, together.

At the University of Wisconsin-Madison, Ben Lindley, an assistant professor of engineering physics and an expert on nuclear reactors, and Mike Wagner, an assistant professor of mechanical engineering and a solar energy expert, are studying the feasibility and benefits of such a coupling.

Photovoltaic cells work best when sunlight is incident directly on them. To make the most of sunlight available during the day, scientists have relied on solar tracking to move panels in sync with the Sun as its travels across the sky. However, installing these systems increases the cost of deploying solar panels, which is a significant obstacle to their wide-scale adoption.

As the world gets warmer, the use of power-hungry air conditioning systems is projected to increase significantly, putting a strain on existing power grids and bypassing many locations with little or no reliable electric power. Now, an innovative system developed at MIT offers a way to use passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water.

The system, which combines radiative cooling, evaporative cooling, and thermal insulation in a slim package that could resemble existing solar panels, can provide up to about 19 degrees Fahrenheit (9.3 degrees Celsius) of cooling from the ambient temperature, enough to permit safe food storage for about 40 percent longer under very humid conditions. It could triple the safe storage time under dryer conditions.

The findings are reported today in the journal Cell Reports Physical Science, in a paper by MIT postdoc Zhengmao Lu, Arny Leroy PhD ’21, professors Jeffrey Grossman and Evelyn Wang, and two others. While more research is needed in order to bring down the cost of one key component of the system, the researchers say that eventually such a system could play a significant role in meeting the cooling needs of many parts of the world where a lack of electricity or water limits the use of conventional cooling systems.

Perovskite solar cells designed by a team of scientists from the National University of Singapore (NUS) have attained a world record efficiency of 24.35% with an active area of 1 cm2. This achievement paves the way for cheaper, more efficient and durable solar cells.

To facilitate consistent comparisons and benchmarking of different solar cell technologies, the photovoltaic (PV) community uses a standard size of at least 1 cm2 to report the efficiency of one-sun in the “Solar cell efficiency tables.” Prior to the record-breaking feat by the NUS team, the best 1 cm2 recorded a of 23.7%. This ground-breaking achievement in maximizing from next-generation will be crucial to securing the world’s energy future.

Perovskites are a class of materials that exhibit high light absorption efficiency and ease of fabrication, making them promising for solar cell applications. In the past decade, perovskite solar cell technology has achieved several breakthroughs, and the technology continues to evolve.

The idea of solar energy being transmitted from space is not a new one. In 1968, a NASA engineer named Peter Glaser produced the first concept design for a solar-powered satellite. But only now, 55 years later, does it appear scientists have actually carried out a successful experiment. A team of researchers from Caltech announced on Thursday that their space-borne prototype, called the Space Solar Power Demonstrator (SSPD-1), had collected sunlight, converted it into electricity and beamed it to microwave receivers installed on a rooftop on Caltech’s Pasadena campus. The experiment also proves that the setup, which launched on January 3, is capable of surviving the trip to space, along with the harsh environment of space itself.

“To the best of our knowledge, no one has ever demonstrated wireless energy transfer in space even with expensive rigid structures. We are doing it with flexible lightweight structures and with our own integrated circuits. This is a first,” said Ali Hajimiri, professor of electrical engineering and medical engineering and co-director of Caltech’s Space Solar Power Project (SSPP), in a press release published on Thursday.

The experiment — known in full as Microwave Array for Power-transfer Low-orbit Experiment (or MAPLE for short) — is one of three research projects being carried out aboard the SSPD-1. The effort involved two separate receiver arrays and lightweight microwave transmitters with custom chips, according to Caltech. In its press release, the team added that the transmission setup was designed to minimize the amount of fuel needed to send them to space, and that the design also needed to be flexible enough so that the transmitters could be folded up onto a rocket.

Stella Vita is the World’s first ever solar powered campervan capable of a staggering 600 Km on a single charge! Aptly described as a “self-sustaining house on wheels” it comes kitted out with a double bed, sofa, kitchen area, a shower, sink and toilet! This could just be the perfect way to go off-grid…! Robert went to meet the engineers at Eindhoven University of Technology to see it for himself.

0:00 A solar powered campervan?!
1:20 A 3000Km road trip.
3:55 Better than the back of a Tesla.
4:38 Back to Uni.
6:40 600Km of range.
7:12 Everything is lightweight.
8:51 Experimental but comfortable.
9:44 Key design elements.
10:43 Built in this room.
11:35 Robert makes his bid.
12:02 Arriving in Tarifa.
12:50 Can we buy one?
13:30 Bobby’s outro.

Fully Charged LIVE is BACK! Get your tickets now:
Amsterdam — 20th, 21st & 22nd May 2022: https://fullycharged.live/eu/
San Diego — 10th & 11th September 2022: https://fullycharged.live/us/

Become a Patreon: https://www.patreon.com/fullychargedshow.

It is June 2022, and a flying machine that looks like a cross between a prehistoric beast and a spaceship is about to take off. Named the Zephyr S, it has long spindly wings the length of an airliner’s. Together with its small, thin body and head, these make it resemble a pterodactyl. Its shimmering tinfoil-like solar panels and lightweight skeletal frame are more like something you’d see on a craft meant for space.


Its mission for the US Army is a secret, but clearly on its manufacturer’s mind is the desire to shatter a few records, particularly that for the longest flight duration for any type of airplane, which has stood for 63 years. In 1959 two men flew a four-seat Cessna light aircraft for 64 days, 22 hours and 19 minutes, refuelling in-flight from a truck.

British aviation pioneer Chris Kelleher designed the first Zephyr in 2002. His vision was of an uncrewed aircraft capable of “eternal flight” in the stratosphere. He foresaw that solar power and lightweight materials would lead to aircraft capable of staying aloft for months, or even years. The Zephyr S is the first production model.

The stratosphere is the second layer of our atmosphere. It begins around 33,000ft (10,000m) and ends at around 160,000ft (48,800m). If an aircraft can fly above 50,000ft (15,150m), it can fly above the turbulent weather that we experience closer to the ground, in the troposphere. The problem is that that high the air is very thin, making flying – and breathing – a challenge.