US turns old nuclear site into polysilicon hub to produce 11 GW of solar cells yearly.
Former US nuclear plant site to be transformed into a polysilicon hub with energy-efficient production and renewable infrastructure.
US turns old nuclear site into polysilicon hub to produce 11 GW of solar cells yearly.
Former US nuclear plant site to be transformed into a polysilicon hub with energy-efficient production and renewable infrastructure.
An international team led by UCL researchers has developed durable new solar cells capable of efficiently harvesting energy from indoor light, meaning that devices such as keyboards, remote controls, alarms and sensors could soon be battery-free.
The team used a material called perovskite, which is increasingly used in outdoor solar panels, and unlike traditional silicon-based solar panels, has the potential to be used indoors as well as its composition can be adjusted to better absorb the specific wavelengths of indoor light.
A major drawback of perovskite, however, is that it contains tiny defects in its crystal structure —known as traps—that can cause electrons to get stuck before their energy can be harnessed. These defects not only interrupt the flow of electricity but also contribute to the material’s degradation over time.
SpaceX is making significant progress towards establishing a human presence on Mars, with a major contract, advancements in technology, and plans for infrastructure development, potentially giving them a lead over competitors and raising questions about the future of space exploration and ownership ##
## Questions to inspire discussion.
Mars Exploration and Infrastructure.
🚀 Q: What is SpaceX’s breakthrough in Mars exploration? A: SpaceX’s Starship secured its first paying customer for Mars payloads: the Italian Space Agency, in a deal worth hundreds of millions of dollars.
🔬 Q: What experiments will the Italian Space Agency conduct on Mars? A: The payload includes plant growth, radiation, and local climate monitoring experiments, collecting data during the 6-month flight and on Mars’ surface.
🤖 Q: How will robots assist in Mars exploration? A: SpaceX plans to send 1,000–2,000 Optimus robots to Mars to fix rovers, run experiments, maintain equipment, and scout locations for future missions.
Perovskite is a rising star in the field of materials science. The mineral is a cheaper, more efficient alternative to existing photovoltaic materials like silicon, a semiconductor used in solar cells. Now, new research has shown that applying pressure to the material can alter and fine-tune its structures—and thus properties—for a variety of applications.
Using the Canadian Light Source (CLS) at the University of Saskatchewan, a team of researchers observed in real time what happened when they “squeezed” a special type of perovskite between two diamonds. 2D hybrid perovskite is made up of alternating organic and inorganic layers. It’s the interaction between these layers, says Dr. Yang Song, professor of chemistry at Western University, that determines how the material absorbs, emits, or controls light.
The research team found that applying pressure significantly increased the material’s photoluminescence, making it brighter, which Song says hints at potential applications in LED lighting. The team also observed a continuous change in its color from green to yellow to red. “So you can tune the color.” Being able to observe changes to the material as they happen using ultrabright synchrotron light was critical to their research, said Song.
A team of international researchers led by King Abdullah University of Science and Technology (KAUST) and including researchers from King Abdulaziz City for Science and Technology (KACST) has developed a new composite material that enhances the performance of solar cells. Solar cells with the material functioning for weeks in the Saudi Arabia desert showed higher power output and a longer operation time than solar cells without. Additionally, the material is cheap to fabricate and reduces the cost of maintaining solar cells. The study can be read in Materials Science and Engineering.
Composite material keeps solar cells cool using air moisture and no electricity to extend solar cell lifetime more than 200%.
UC Riverside researchers have unveiled a powerful new imaging technique that exposes how cutting-edge materials used in solar panels and light sensors convert light into electricity—offering a path to better, faster, and more efficient devices.
The breakthrough, published in the journal Science Advances, could lead to improvements in solar energy systems and optical communications technology. The study title is “Deciphering photocurrent mechanisms at the nanoscale in van der Waals interfaces for enhanced optoelectronic applications.”
The research team, led by associate professors Ming Liu and Ruoxue Yan of UCR’s Bourns College of Engineering, developed a three-dimensional imaging method that distinguishes between two fundamental processes by which light is transformed into electric current in quantum materials.
Transparent aluminum oxide (TAlOx), a real material despite its sci-fi name, is incredibly hard and resistant to scratches, making it perfect for protective coatings on electronics, optical sensors, and solar panels. On the sci-fi show Star Trek, it is even used for starship windows and spacefaring aquariums.
Current methods of making TAlOx are expensive and complicated, requiring high-powered lasers, vacuum chambers, or large vats of dangerous acids. That may change thanks to research co-authored by Filipino scientists from Ateneo de Manila University.
Instead of immersing entire sheets of metal into acidic solutions, the researchers applied microdroplets of acidic solution onto small aluminum surfaces and applied an electric current. Just two volts of electricity—barely more than what’s found in a single AA household flashlight battery—was all that was needed to transform the metal into glass-like TAlOx.
Perovskites have long captivated the interest of materials scientists and engineers for their remarkable potential in next-generation solar cells, LEDs, and optoelectronic devices. Now, a newly published study pushes the envelope even further by showing how carefully applied pressure can finely tune the light-handling properties of a 2D hybrid perovskite, marking a significant leap toward real-time structural control in photonic technologies.
The research, carried out using the Canadian Light Source (CLS) at the University of Saskatchewan and the Advanced Photon Source (APS) in Chicago, utilized ultrabright synchrotron radiation to observe how perovskite layers respond under pressure. The focus was a 2D Dion–Jacobson hybrid lead iodide perovskite with alternating organic and inorganic sheets—structures whose interaction defines how the material absorbs, emits, or modulates light.
Skoltech researchers and their colleagues have uncovered an intricate light manipulation mechanism likely used by microscopic algae to boost photosynthesis.
By studying the interaction of light with the elaborately patterned silicon dioxide shells enclosing the single-celled algae, the team hopes to reveal principles that could eventually be leveraged in light detectors, bio-and chemical sensors, protective coatings against ultraviolet rays, solar cells, and other nature-inspired technology, right up to artificial photosynthesis systems using CO2 and water to make fuel.
The study was published in the journal Optica.