Toggle light / dark theme

Quantum randomness and nonlocality: New insights from MIMO systems

Researchers from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences revealed that not all forms of quantum nonlocality guarantee intrinsic randomness. They demonstrated that violating two-input Bell inequalities is both necessary and sufficient for certifying randomness, but this equivalence breaks down in scenarios involving multiple inputs. The study is published in Physical Review Letters.

Quantum mechanics is inherently probabilistic, and this intrinsic has been leveraged for applications like random number generation. However, ensuring the security of these random numbers in real-world scenarios is challenging due to potential vulnerabilities in the devices used.

Bell nonlocality, where particles exhibit correlations that cannot be explained by classical physics, offers a way to certify randomness without trusting the devices. Previous studies have shown that violating Bell inequalities can certify randomness in simple two-input, two-output systems. However, the applicability of this principle to more complex, multiple-input, multiple-output (MIMO) systems has been unclear.

EncryptHub linked to MMC zero-day attacks on Windows systems

A threat actor known as EncryptHub has been linked to Windows zero-day attacks exploiting a Microsoft Management Console vulnerability patched this month.

Uncovered by Trend Micro staff researcher Aliakbar Zahravi, this security feature bypass (dubbed ‘MSC EvilTwin’ and now tracked as CVE-2025–26633) resides in how MSC files are handled on vulnerable devices.

Attackers can leverage the vulnerability to evade Windows file reputation protections and execute code because the user is not warned before loading unexpected MSC files on unpatched devices.

Patterned spintronic emitter enables room-temperature THz polarization control for wireless and biomedical applications

Terahertz (THz) waves are located between microwaves and infrared light in the electromagnetic spectrum. They can pass through many materials without causing damage, making them useful for security scanning, medical imaging, and high-speed wireless communication. Unlike visible light or radio waves, THz waves can reveal structural details of biological molecules and penetrate nonmetallic objects like clothing and paper.

THz waves hold great promise, but to harness them effectively, their polarization (the direction in which the waves vibrate) must be controlled. Polarization control is crucial for optimizing THz applications, from enhancing to improving imaging and sensing.

Unfortunately, existing THz polarization control methods rely on bulky external components like wave plates or metamaterials. These solutions are often inefficient, limited to narrow frequency ranges, and unsuitable for compact devices. To overcome these limitations, researchers have been exploring approaches to control THz polarization directly at the source.

Researchers unveil unidirectional light focusing using diffractive optics

Researchers at the University of California, Los Angeles (UCLA) have unveiled a new optical technology that enables precise focusing of light—only in one direction. This novel unidirectional focusing design uses structured diffractive layers that are optimized using deep learning to transmit light efficiently in the forward direction of operation while effectively suppressing unwanted backward focusing of light.

The findings are published in the journal Advanced Optical Materials. This innovation offers a compact and broadband solution for the unidirectional delivery of radiation with significant potential for applications in security, defense, and .

Controlling asymmetric light propagation—where light preferentially travels in one direction while being blocked or scattered in the opposite direction—has been a longstanding need in optical systems. Traditional solutions often rely on specialized material properties or nonlinear materials, which require relatively complex and costly fabrication methods, bulky hardware, and high-power laser sources.

Joscha Bach and Anthony Aguirre on Digital Physics and Moving Towards Beneficial Futures

Joscha Bach, Cognitive Scientist and AI researcher, as well as Anthony Aguirre, UCSC Professor of Physics, join us to explore the world through the lens of computation and the difficulties we face on the way to beneficial futures.

Topics discussed in this episode include:

-Understanding the universe through digital physics.
–How human consciousness operates and is structured.
–The path to aligned AGI and bottlenecks to beneficial futures.
–Incentive structures and collective coordination.

Find the page for this podcast here: https://futureoflife.org/2021/03/31/j… to be the FLI Podcast Producer here: https://futureoflife.org/job-postings/ Follow the podcast on: Spotify: https://open.spotify.com/show/2Op1WO3… Apple Podcasts: https://podcasts.apple.com/us/podcast… SoundCloud: / futureoflife Have any feedback about the podcast? You can share your thoughts here: www.surveymonkey.com/r/DRBFZCT Timestamps: 0:00 Intro 1:58 What is truth and knowledge? 11:39 What is subjectivity and objectivity? 15:13 What is the universe ultimately? 20:32 Is the universe a cellular automaton? Is the universe ultimately digital or analogue? 25:59 Hilbert’s hotel from the point of view of computation 39:14 Seeing the world as a fractal 43:00 Describing human consciousness 57:46 Meaning, purpose, and harvesting negentropy 1:02:30 The path to aligned AGI 1:05:13 Bottlenecks to beneficial futures and existential security 1:16:01 A future with one, several, or many AGI systems? How do we maintain appropriate incentive structures? 1:30:39 Non-duality and collective coordination 1:34:16 What difficulties are there for an idealist worldview that involves computation? 1:37:19 Which features of mind and consciousness are necessarily coupled and which aren’t? 1:47:47 Joscha’s final thoughts on AGI This podcast is possible because of the support of listeners like you. If you found this conversation to be meaningful or valuable, consider supporting it directly by donating at: https://futureoflife.org/donate Contributions like yours make these conversations possible.

Apply to be the FLI Podcast Producer here: https://futureoflife.org/job-postings/

Follow the podcast on:

Interview with Ray Kurzweil

On Intelligent Machines, Leo, Paris, and Jeff sit with Ray Kurzweil to talk to him about the current state of AI, the singularity, and computronium.

For the full episode, go to: https://twit.tv/im/810

You can find more about TWiT and subscribe to our full shows at https://podcasts.twit.tv.
Subscribe: https://twit.tv/subscribe.

Products we recommend: https://www.amazon.com/shop/twitnetca?tag=lifeboatfound-20… may earn commissions on certain products. Join Club TWiT for Ad-Free Podcasts! Support what you love and get ad-free shows, a members-only Discord, and behind-the-scenes access. Join today: https://twit.tv/clubtwit Join our TWiT Community on Discourse: https://www.twit.community/ Follow us:

About us: TWiT.tv is a technology podcasting network located in the San Francisco Bay Area with the #1 ranked technology podcast This Week in Tech hosted by Leo Laporte. Every week we produce over 30 hours of content on a variety of programs including Tech News Weekly, MacBreak Weekly, Windows Weekly, Security Now, Intelligent Machines, and more.
TWiT may earn commissions on certain products.

Join Club TWiT for Ad-Free Podcasts!
Support what you love and get ad-free shows, a members-only Discord, and behind-the-scenes access.
Join today: https://twit.tv/clubtwit.

Join our TWiT Community on Discourse: https://www.twit.community/