Menu

Blog

Archive for the ‘security’ category: Page 42

Nov 26, 2022

Banned: Huawei and ZTE telecommunications ‘threat’ to national security, says US

Posted by in category: security

Huawei, ZTE, Hytera Communications Corp., Hikvision, and Dahua have made it to the list.

United States has prohibited selling and importing new Huawei and ZTE telecommunications devices due to “national security concerns.”

The Federal Communications Commission (FCC) approved new regulations that forbade the sale and import of new Huawei and ZTE, according to the documents released by the agency on Friday.

Nov 25, 2022

Terabit FSO communication based on a soliton microcomb

Posted by in categories: computing, information science, internet, security, space

Large-capacity wireless data transmission systems are demanded along with the development of multimedia services, video-based interactions, and cloud computing in the era of big data. Compared with radio-frequency communication systems, free-space optical (FSO) signal transmission technology has the merits of high data rate, great flexibility, less power consumption, high security, and large license-free bandwidths [13], which has been widely applied in terrestrial transmission [4], last mile solutions [5], ground-to-satellite optical communication [6], disaster recovery [7], and so on. To date, up to 10 Gbit/s FSO communication system has been realized for transmission distance over 1,000 km of star-ground or inter-star communications [8], and 208 Gbit/s terrestrial communication is also reported at 55 m transmission distance [9]. Wavelength-division multiplexing (WDM) technology is commonly employed to improve data transmission capacity in fiber communication systems, which would be more effective in FSO communication systems benefitting from very weak non-linear cross talk between different frequency channels in free space. Based on a simulation platform, a WDM FSO communication system could boost the signal transmission capacity to 1.28 Tbit/s by modulating 32 optical channels with dual-polarization 16 quadrature amplitude modulation signals [10]. To date, beyond 10 Tbit/s FSO communication systems have been experimentally demonstrated recently using WDM technology [11,12]. However, a WDM communication system becomes power-hungry and bulky with the increase of transmission channels while traditional distributed feedback lasers are used as optical carriers. In addition, more rigorous requirement is imposed on the frequency tolerance of carrier lasers to avoid channel overlap with the decrease of channel frequency interval.

The invention of microresonator-based optical frequency combs provides novel integrated optical laser sources with the natural characteristic of equi-spaced frequency intervals which can overcome the challenge of massive parallel carrier generation [13 19]. In particular, the spontaneously organized solitons in continuous-wave (CW)-driven microresonators provide a route to low-noise ultra-short pulses with a repetition rate from 10 GHz to beyond terahertz. Soliton microcombs (SMCs) are typical stable laser sources where the double balances of non-linearity and dispersion as well as dissipation and gain are reached in microcavities. Meanwhile, the linewidth of the comb lines is similar with the pump laser, which enables low power consumption and costs multiwavelength narrow-linewidth carriers for a wide range of applications. Through designing the scale of microresonators, the repetition rate of SMCs could be compatible with dense wavelength-division multiplexing (DWDM) communication standard. To date, several experiments have demonstrated the potential capacity for ultra-high-speed fiber communication systems using SMCs as multiwavelength laser sources [20 30]. For instance, a coherent fiber communication system has improved the transmission capacity up to 55 Tbit/s using single bright SMCs as optical carriers and a local oscillator [20]. And dark solitons and soliton crystals are also employed as multiwavelength laser sources for WDM communication systems [27 30]. However, few studies have carried out massive parallel FSO communication systems using the integrated SMCs as laser sources.

In this paper, we experimentally demonstrate a massive parallel FSO communication system using an SMC as a multiple optical carrier generator. 102 comb lines are modulated by 10 Gbit/s differential phase shift keying (DPSK) signals to boost the FSO transmission rate up to beyond 1 Tbit/s. The transmitter and receiver terminals are installed in two buildings at a distance of ∼1 km, respectively. Using a CW laser as reference, the influence of optical signal-to-noise ratios (OSNRs) on the bit error rate (BER) performance is experimentally analyzed. Our results show an effective solution for large-capacity spatial signal transmission using an integrated SMC source which has potential applications in future satellite-to-ground communication systems.

Nov 24, 2022

Decades-old math theorem cracks US government encryption algorithm

Posted by in categories: computing, encryption, government, information science, mathematics, quantum physics, security

The information security landscape is rapidly changing in response to quantum computing technology, which is capable of cracking modern encryption techniques in minutes, but a promising US government encryption algorithm for the post-quantum world was just cracked in less than an hour thanks to a decades-old math theorem.

In July 2022, the US National Institute of Standards and Technology (NIST) chose a set of encryption algorithms that it hoped would stand up to the encryption-cracking power of quantum computers and tasked researchers with probing them for vulnerabilities, offering a $50,000 prize for anyone who was able to break the encryption.

Nov 22, 2022

Dr. David Markowitz, PhD — IARPA — High-Risk, High-Payoff Research For National Security Challenges

Posted by in categories: bioengineering, biological, genetics, information science, neuroscience, robotics/AI, security, surveillance

High-Risk, High-Payoff Bio-Research For National Security Challenges — Dr. David A. Markowitz, Ph.D., IARPA


Dr. David A. Markowitz, Ph.D. (https://www.markowitz.bio/) is a Program Manager at the Intelligence Advanced Research Projects Activity (IARPA — https://www.iarpa.gov/) which is an organization that invests in high-risk, high-payoff research programs to tackle some of the most difficult challenges of the agencies and disciplines in the U.S. Intelligence Community (IC).

Continue reading “Dr. David Markowitz, PhD — IARPA — High-Risk, High-Payoff Research For National Security Challenges” »

Nov 21, 2022

Microlaser chip adds new dimensions to quantum communication

Posted by in categories: computing, engineering, quantum physics, security

Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits,” doubling the quantum information space of any previous on-chip laser.

Liang Feng, Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE), along with MSE postdoctoral fellow Zhifeng Zhang and ESE Ph.D. student Haoqi Zhao, debuted the technology in a recent study published in Nature. The group worked in collaboration with scientists from the Polytechnic University of Milan, the Institute for Cross-Disciplinary Physics and Complex Systems, Duke University and the City University of New York (CUNY).

Nov 21, 2022

Exodus continues at Twitter as Elon Musk hints at possible bankruptcy

Posted by in categories: Elon Musk, security

Nov 18, 2022

Adversarial Attack Beats Near-Superhuman AI Go Player

Posted by in categories: robotics/AI, security

Computer security specialists had hoped Go-playing AI agents would be immune to adversarial attacks. Now it’s back to the drawing board.

Nov 17, 2022

Researchers discover how music could be used to trigger a deadly pathogen release

Posted by in categories: biotech/medical, computing, media & arts, mobile phones, security

Researchers at the University of California, Irvine have discovered that the safe operation of a negative pressure room—a space in a hospital or biological research laboratory designed to protect outside areas from exposure to deadly pathogens—can be disrupted by an attacker armed with little more than a smartphone.

According to UCI cyber-physical systems security experts, who shared their findings with attendees at the Association for Computing Machinery’s recent Conference on Computer and Communications Security in Los Angeles, mechanisms that control airflow in and out of biocontainment facilities can be tricked into functioning irregularly by a sound of a particular frequency, possibly tucked surreptitiously into a popular song.

“Someone could play a piece of music loaded on their smartphone or get it to transmit from a television or other audio device in or near a negative room,” said senior co-author Mohammad Al Faruque, UCI professor of electrical engineering and computer science. “If that music is embedded with a tone that matches the of the pressure controls of one of these spaces, it could cause a malfunction and a leak of deadly microbes.”

Nov 16, 2022

Smart home hubs leave users vulnerable to hackers

Posted by in categories: encryption, robotics/AI, security

Machine learning programs mean even encrypted information can give cybercriminals insight into your daily habits.

Smart technology claims to make our lives easier. You can turn on your lights, lock your front door remotely and even adjust your thermostat with the click of a button.

But new research from the University of Georgia suggests that convenience potentially comes at a cost—your personal security.

Nov 16, 2022

Reservations for new community of 3D homes in Georgetown to open in 2023

Posted by in categories: habitats, internet, security, solar power, sustainability

The community will offer eight different floor plans, ranging from three to four bedrooms and two to three bathrooms. Homes will be powered by rooftop solar panels, include a Ring Video Doorbell Pro, Schlage Encode Smart WiFi deadbolt, a Honeywell Home T6 Pro WiFi smart thermostat and a Wolf Ranch security package.

RELATED: The Georgetown gem that gleams rich with history: Southwestern University

Continue reading “Reservations for new community of 3D homes in Georgetown to open in 2023” »

Page 42 of 143First3940414243444546Last