Toggle light / dark theme

The rapid evolution of artificial intelligence is transforming cybersecurity, offering unprecedented opportunities to defend against increasingly complex and automated threats. AI is no longer a support tool—it’s emerging as a central pillar of modern security strategies. From detecting anomalies and automating threat responses to augmenting security teams, AI is enabling defenders to act faster, scale their operations, and outpace attackers. However, as the technology advances, significant challenges remain, from adversarial AI to the cultural inertia of legacy systems.

Tomer Weingarten, CEO of SentinelOne, and Richard Stiennon, research analyst with IT-Harvest and author of Security Yearbook 2024, both highlight the potential—and limitations—of AI in cybersecurity. “It’s very early days for AI in security,” says Stiennon. “I have found 84 startups with various AI agents or which hope to deploy guardrails to protect companies from mishandling of data by users of AI. It’s way too early to say that any of them are having an impact on the ecosystem. That said, the future is clear. AI will be part of every cyber defense position.”

Weingarten echoes this sentiment, noting that AI’s role is rapidly expanding but far from mature. “AI is no longer just about supporting cybersecurity—it’s fundamentally changing how we secure systems, anticipate threats, and automate responses,” he explains.

We crafted our first rodent car from a plastic cereal container. After trial and error, my colleagues and I found that rats could learn to drive forward by grasping a small wire that acted like a gas pedal. Before long, they were steering with surprising precision to reach a Froot Loop treat.

As expected, rats housed in enriched environments – complete with toys, space and companions – learned to drive faster than those in standard cages. This finding supported the idea that complex environments enhance neuroplasticity: the brain’s ability to change across the lifespan in response to environmental demands.

After we published our research, the story of driving rats went viral in the media. The project continues in my lab with new, improved rat-operated vehicles, or ROVs, designed by robotics professor John McManus and his students. These upgraded electrical ROVs – featuring rat-proof wiring, indestructible tires and ergonomic driving levers – are akin to a rodent version of Tesla’s Cybertruck.

Might Artificial Intelligence be the ideal lab assistant? Stefan Harrer delves into the revolutionary role of generative AI in science. He reveals how AI agents are not just tools but transformative partners for scientists enabling them to achieve breakthroughs in biology and beyond, heralding a new era of scientific discovery and innovation. This inspiring talk highlights the potential for AI to redefine the boundaries of the scientific method and our understanding of life. Dr Stefan Harrer is the Director of AI for Science at CSIRO, Australia’s national science agency. He is on a mission to revolutionise scientific discovery by harnessing the power of AI agents. In senior leadership roles at IBM Research, he led groundbreaking work on AI-driven epilepsy management and developed the world’s first AI-powered wearable for seizure prediction. An inventor with 73 granted patents, a passionate advocate for ethical AI, and a mentor and advisor to startups and governments, Stefan inspires the next frontier of AI innovation and use. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

The latest AI News. Learn about LLMs, Gen AI and get ready for the rollout of AGI. Wes Roth covers the latest happenings in the world of OpenAI, Google, Anthropic, NVIDIA and Open Source AI.

My Links 🔗
➡️ Subscribe: / @wesroth.
➡️ Twitter: https://twitter.com/WesRothMoney.
➡️ AI Newsletter: https://natural20.beehiiv.com/subscribe.

Video Links:
Capital, AGI, and human ambition.
https://nosetgauge.substack.com/p/cap

Moore’s Law for Everything.

I had a conversation with NVIDIA CEO Jensen Huang and we spoke about groundbreaking developments in physical AI and other big announcements made at CES. Jensen discusses how NVIDIA Cosmos and Omniverse are revolutionizing robot training, enabling machines to understand the physical world and learn in virtual environments — reducing training time from years to hours.

He shares insights on NVIDIA DRIVE AI’s autonomous vehicle developments, including their major partnership with Toyota, and talks about the critical role of safety in their three-computer system approach.

Jensen also shares what he considers to be the most impactful technology of our time! This conversation left me feeling excited for the future of technology and where we’re headed. I hope you enjoy it as much as I did.

Timestamps:

Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust AI testing to ensure ethical and sustainable progress.

A perspective published on November 13 in Intelligent Computing, a Science Partner Journal, argues that modern artificial intelligence.

Artificial Intelligence (AI) is a branch of computer science focused on creating systems that can perform tasks typically requiring human intelligence. These tasks include understanding natural language, recognizing patterns, solving problems, and learning from experience. AI technologies use algorithms and massive amounts of data to train models that can make decisions, automate processes, and improve over time through machine learning. The applications of AI are diverse, impacting fields such as healthcare, finance, automotive, and entertainment, fundamentally changing the way we interact with technology.