Toggle light / dark theme

Sarcos robo-suit turning Delta crews into superhuman man-machines

Sarcos sprinkled the flavor of the future on last year’s CES show when it revealed the latest evolution of its robotic exoskeleton technology, the Guardian XO. At this year’s CES, the Salt Lake City-based robotics specialist and Delta Airlines announced pilot trials, with Delta employees set to be among the first workers to suit up in the battery-powered, force-multiplying wearable robots, enjoying superhuman strength and endurance without body wear and tear.

Few things make us want to trade a cushy gig of rambling away about gadgets semi-coherently on the Web for a life of physical labor like the Guardian XO. A full-body robotic suit that turns its wearer into something of a near-cyborg superhero, the XO looks straight out of a dystopian sci-fi thriller and brings the capabilities to match. It bears its own substantial weight, along with 200 additional pounds (91 kg) of payload, letting the wearer lift heavy objects for hours without physical strain or fatigue.

Sarcos says the Guardian XO takes under 30 seconds to put on or take off, responds in milliseconds to the operator’s movements, and amplifies his or her strength by up to 20 times. It offers eight hours of battery power, and a hot-swapping battery system allows users to extend that operational time. All in all, it’s a highly impressive machine meant to help humans complete obligatory lifting tasks that would be difficult or impossible to tackle with more conventional lifting machinery.

Dendritic action potentials and computation in human layer 2/3 cortical neurons

A new unique signal discovered within the brain might be what makes us human:

https://science.sciencemag.org/content/367/6473/83

For the latest news in neuroscience, psychology, and artificial intelligence, please like and follow our Facebook page: https://www.facebook.com/The-Neuro-Network-383136302314720/


A special developmental program in the human brain drives the disproportionate thickening of cortical layer 2/3. This suggests that the expansion of layer 2/3, along with its numerous neurons and their large dendrites, may contribute to what makes us human. Gidon et al. thus investigated the dendritic physiology of layer 2/3 pyramidal neurons in slices taken from surgically resected brain tissue in epilepsy patients. Dual somatodendritic recordings revealed previously unknown classes of action potentials in the dendrites of these neurons, which make their activity far more complex than has been previously thought. These action potentials allow single neurons to solve two long-standing computational problems in neuroscience that were considered to require multilayer neural networks.

Science, this issue p. 83

The active electrical properties of dendrites shape neuronal input and output and are fundamental to brain function. However, our knowledge of active dendrites has been almost entirely acquired from studies of rodents. In this work, we investigated the dendrites of layer 2 and 3 (L2/3) pyramidal neurons of the human cerebral cortex ex vivo. In these neurons, we discovered a class of calcium-mediated dendritic action potentials (dCaAPs) whose waveform and effects on neuronal output have not been previously described. In contrast to typical all-or-none action potentials, dCaAPs were graded; their amplitudes were maximal for threshold-level stimuli but dampened for stronger stimuli. These dCaAPs enabled the dendrites of individual human neocortical pyramidal neurons to classify linearly nonseparable inputs—a computation conventionally thought to require multilayered networks.

Carboncopies: Here’s a weblink to the research paper:

Your brain is the orchestra that plays the symphony of your mental experience and your awareness, and that experience is your window on existence and on the universe. Our aim is to preserve, restore, and even improve your mental experience beyond the limits of biology. With dedication, scientific advances within our lifetimes may allow us to record the unique arrangement and responses of neurons and synapses that encode your memories, their active behavior, and ultimately to restore all of that in a neural prosthesis that seamlessly repairs a brain function, or a complete artificial brain. Some of this is still reminiscent of science fiction, but each challenge is well on its way to being a tractable technology problem supported by scientific evidence and understanding.

Building in Space: Using Maxar’s Robotics to Enable Sustainable Space Operations

Combining Maxar’s capabilities in robotics, spacecraft and space systems operations creates the opportunity to deploy and maintain revolutionary new space architectures. Since the dawn of space exploration, pioneers in the field envisioned sustainable space stations enabled by in-space assembly, manufacturing and servicing. Wernher Von Braun conducted a detailed study in 1945 that defined the deployment and construction of the rotating wheel space station. The design included maintaining artificial gravity and oxygen levels. Today, NASA has led the construction and continuous operation of the International Space Station for over 20 years, demonstrating the technical feasibility of large-scale in-space assembly and servicing.

Recently, Maxar has been working with NASA on concepts for both human-tended and uncrewed sustainable space platforms. These in-space assembled structures provide basic functions and a modular interface for new and evolving payloads and missions. The lunar orbiting Gateway will be one such platform where the Maxar-developed Power and Propulsion Element will provide the foundation of power, maneuvering, communications systems and initial docking capabilities. Additional Gateway segments will plug-in to the Power and Propulsion Element to make use of these systems. The versatility of the Power and Propulsion Element also allows it to be refueled in orbit, and we are working with NASA to conceive the architecture that could resupply the Gateway with fuel and other essentials.

Another concept we’ve been developing with NASA is an uncrewed “science station” that is constructed in sun synchronous LEO orbit and features science instruments that are robotically installed, upgraded, and replaced over time. This allows for co-location of science instruments, which is often desired or necessary, while eliminating the need to budget for, develop, integrate and launch all the payloads simultaneously on a single launch.

Deep learning vs. machine learning: Understand the differences

Machine learning and deep learning are both forms of artificial intelligence. You can also say, correctly, that deep learning is a specific kind of machine learning. Both machine learning and deep learning start with training and test data and a model and go through an optimization process to find the weights that make the model best fit the data. Both can handle numeric (regression) and non-numeric (classification) problems, although there are several application areas, such as object recognition and language translation, where deep learning models tend to produce better fits than machine learning models.

Ringing the Alarm on Killer Robots

Major military powers are racing to embrace weapons that select and fire on targets without meaningful human control. This is raising the specter of immoral, unaccountable, largely uncontrollable weapon systems – killer robots. It is also driving fears of widespread proliferation and arms races leading to global and regional instability.

There is increasing recognition that it’s time to ring the alarm on these weapons systems. This month in Paris, United Nations Secretary-General Antonio Guterres called for a new international treaty to ban killer robots, stating that “machines that have the power and discretion to kill without human intervention are politically unacceptable and morally despicable.”

Yet at last week’s meeting of the Convention on Conventional Weapons (CCW) at the UN in Geneva, states made no progress towards launching negotiations on a treaty to ban or restrict such fully autonomous weapons. Instead, they agreed to spend the next two years developing a “normative and operational framework” to address concerns raised by such weapons systems.

Domestically-developed kamikaze drones to join Turkish army’s inventory as of 2020

Coming soon to crowd suppression near you…


30 upgraded KARGU (Autonomous Tactical Multi-Rotor Attack UAV) kamikaze drones developed by Turkish defense contractor Defense Technologies Engineering and Trade Inc. (STM) will join the Turkish Armed Forces’ inventory as of 2020 to take part in critical operations in the country’s east and along the Syrian border.

The KARGU battle drone, which was developed by the STM to support the tactical and field needs of Turkish security forces, eliminates targets more efficiently with new features such as enhanced ammo capacity and improved accuracy. The 30 drones will also have the capacity to destroy an entire brigade and warship.

STM General Director Murat Ikinci said that the previous drones they developed had offered Turkey great military power, but the newest upgrade would take the Turkish military to the next level. He added that the KARGU drone was far superior to its current competitors on the market, the Turkish daily Hürriyet reported.

Autonomous Weapons Systems and the Laws of War

A race in autonomy poses a particular danger because the consequences of investing machines with increased intelligence and decision-making authority are largely unknown and could prove catastrophic. In their haste to match the presumed progress of likely adversaries, states might field robotic weapons with considerable autonomy well before their abilities and limitations have been fully determined, resulting in unintended fatalities or uncontrolled escalation.”


I salute the Arms Control Association … for its keen vision of the goals ahead and for its many efforts to identify and to promote practical measures that are so vitally needed to achieve them.

– Amb. Nobuyasu Abe

Kurds call on US to block Turkish military drones from Syrian air space

Many times now, I have pointed out that the use of Killer Robots should be a war crime. It might not be a theoretical occurrence anymore.

“Syrian Kurds are asking the Pentagon to block US-controlled air space over north-eastern Syria to Turkish armed drones which they claim are causing significant civilian casualties.”


Unmanned weapons ‘targeting anything they wish to’ as Kurds say Turks have killed 509 civilians and 412 troops.