Toggle light / dark theme

Orbital Railguns Will Probably Never Happen

Get 20% off your first Mack Weldon order and try out the Daily Wear System when you go to http://www.mackweldon.com/joescott and enter promo code “JOESCOTT” at checkout.
From the potential of orbital railguns, to space elevators on the moon and Mars, to the threat of AI taking over your job, to the latest on Neuralink, today’s lightning round video features questions from Patreon supporters. Thanks for the great questions guys!

Want to support the channel? Here’s how:

Patreon: http://www.patreon.com/answerswithjoe.
Channel Memberships: https://www.youtube.com/channel/UC-2YHgc363EdcusLIBbgxzg/join.
T-Shirts & Merch: http://www.answerswithjoe.com/store.

Check out my 2nd channel, Joe Scott TMI:
https://www.youtube.com/channel/UCqi721JsXlf0wq3Z_cNA_Ew.

Interested in getting a Tesla or going solar? Use my referral link and get discounts and perks:
https://ts.la/joe74700

Follow me at all my places!

Elon Musk reportedly demanded cameras over radar in self-driving cars because human eyes don’t rely on radar

I think his purpose in doing this is to prioritize full self driving over partial self driving features.


“Humans drive with eyes and biological neural nets,” Musk said in October. “So [it] makes sense that cameras and silicon neural nets are [the] only way to achieve generalized solution to self-driving.”

Moreover, he’s reportedly implementing that philosophy at Tesla.

Musk has repeatedly instructed the company’s Autopilot team, which works on self-driving car tech, to ditch radar and use only cameras instead, the New York Times reported on Monday.

2021 AI Predictions: What We Got Right And Wrong

No multi-billion-dollar acquisitions occurred in the world of AI chips in 2021.

Instead, the leading AI chip startups all raised rounds at multi-billion-dollar valuations, making clear that they aspire not to get acquired but to become large standalone public companies.

In our predictions last December, we identified three startups in particular as likely acquisition targets. Of these: SambaNova raised a $670 million Series D at a $5 billion valuation in April; Cerebras raised a $250 million Series F at a $4 billion valuation last month; and Graphcore raised $220 million at a valuation close to $3 billion amid rumors of an upcoming IPO.

Other top AI chip startups like Groq and Untether AI also raised big funding rounds in 2021.

Full Story:


As of the beginning of this year, no autonomous vehicle company had ever gone public. 2021 is the year that that all changed.

Quantum processor swapped in for a neural network

To handle this, people have trained neural networks on regions where we have more complete weather data. Once trained, the system could be fed partial data and infer what the rest was likely to be. For example, the trained system can create a likely weather radar map using things like satellite cloud images and data on lightning strikes.

This is exactly the sort of thing that neural networks do well with: recognizing patterns and inferring correlations.

What drew the Rigetti team’s attention is the fact that neural networks also map well onto quantum processors. In a typical neural network, a layer of “neurons” performs operations before forwarding its results to the next layer. The network “learns” by altering the strength of the connections among units in different layers. On a quantum processor, each qubit can perform the equivalent of an operation. The qubits also share connections among themselves, and the strength of the connection can be adjusted. So, it’s possible to implement and train a neural network on a quantum processor.

A Vortex in a Nanometric Teacup: Researchers Generate a Vortex Beam of Atoms and Molecules

Robots are already in space. From landers on the moon to rovers on Mars and more, robots are the perfect candidates for space exploration: they can bear extreme environments while consistently repeating the same tasks in exactly the same way without tiring. Like robots on Earth, they can accomplish both dangerous and mundane jobs, from space walks to polishing a spacecraft’s surface. With space missions increasing in number and expanding in scientific scope, requiring more equipment, there’s a need for a lightweight robotic arm that can manipulate in environments difficult for humans.

Lightweight space robot with precise control developed

Robots are already in space. From landers on the moon to rovers on Mars and more, robots are the perfect candidates for space exploration: they can bear extreme environments while consistently repeating the same tasks in exactly the same way without tiring. Like robots on Earth, they can accomplish both dangerous and mundane jobs, from space walks to polishing a spacecraft’s surface. With space missions increasing in number and expanding in scientific scope, requiring more equipment, there’s a need for a lightweight robotic arm that can manipulate in environments difficult for humans.

However, the control schemes that can move such arms on Earth, where the planes of operation are flat, do not translate to space, where the environment is unpredictable and changeable. To address this issue, researchers in Harbin Institute of Technology’s School of Mechanical Engineering and Automation have developed a robotic arm weighing 9.23 kilograms—about the size of a one-year-old baby—capable of carrying almost a quarter of its own weight, with the ability to adjust its position and speed in real time based on its environment.

They published their results on Sept. 28 in Space: Science & Technology.

New lightweight precision robotic arm developed for space applications

In a new paper published in Space: Science & Technology, a team of researchers have created a new lightweight robotic arm with precision controls.

As missions in space increase in scope and variety, so to will the tools necessary to accomplish them. Robots are already used throughout space, but robotic arms used on Earth do not translate well to space. A flat plane relative to the ground enables Earth-bound robotic arms to articulate freely in a three-dimensional coordinate grid with relatively simple programming. However, with constantly changing environments in space, a robotic arm would struggle to orient itself correctly.

/* */