Toggle light / dark theme

Artificial intelligence is being applied to virtually every aspect of our work and recreational lives. From determining calculations for the construction of towering skyscrapers to designing and building cruise ships the size of football fields, AI is increasingly playing a key role in the most massive projects.

But sometimes, all we want to do is move a can of beans.

According to a recently published abstract by researchers at the University of California, Berkeley, they have developed a mechanism that “couples a perception pipeline predicting a target occupancy support distribution with a mechanical search policy that sequentially selects occluding objects to push to the side to reveal the target as efficiently as possible.”

They can check you in and deliver orange juice to your hotel room, answer your questions about a missing package, whip up sushi and pack up thousands of subscription boxes. And, perhaps most importantly, they are completely immune to Covid-19. While people have had a hard time in the coronavirus pandemic, robots are having a moment.

The Covid-19 pandemic has left millions of Americans unemployed – disproportionately those in the service industries where women and people of color make up the largest share of the labor force. In October, 11 million people were unemployed in the US, compared with about 6 million people who were without a job during the same time last year.

Over the past few decades, artificial intelligence (AI) tools have been used to analyze data or complete basic tasks in an increasing number of fields, ranging from computer science to manufacturing, medicine, physics, biology and even artistic disciplines. Researchers at University of Michigan have recently been investigating the use of artificial intelligence (AI) in architecture. Their most recent paper, published in the International Journal of Architectural Computing, specifically explores the potential of AI as a tool to create new architectural designs.

“My partner, Sandra Manninger, and myself, have a long-standing obsession with the idea to cross pollinate the fields of and AI,” Matias del Campo, one of the researchers who carried out the study, told Tech Xplore. “We first got in touch with AI research in 1998, when we were introduced to the OFAI (The Austrian Institute of Artificial Intelligence) through a mutual friend, Dr. Arthur Flexer and we held the first course in Machine Learning for Architecture at the University of Applied Arts in Vienna, in 2006.”

Several years after they first became interested in the potential uses of AI in architecture, del Campo and Manninger started collaborating with the Robotics Department at University of Michigan. Working with Jessy Grizzle, the department’s director, and Alexandra Carlson, one of her Ph.D. students, they were able to significantly expand their research. Their study featured in the International Journal of Architectural Computing is the latest of a series of research efforts in which they investigated the use of AI techniques for designing architectural solutions.

Methylation definition at 5:05, 27:20 a lil about reprogramming, 32:00 q&a, 47:44 Aubrey chimes in, 57:00 Keith Comito(and other throughout)


Zoom transcription: https://otter.ai/u/AIIhn4i_p4DIXHAJx0ZaG0HUnAU

We will be joined by Morgan Levine, Yale University, to discuss the recent article “Underlying Features of Epigenetic Aging Clocks” she co-authored.

AI, Genetics, and Health-Tech / Wearables — 21st Century Technologies For Healthy Companion Animals.


Ira Pastor ideaXme life sciences ambassador interviews Dr. Angela Hughes, the Global Scientific Advocacy Relations Senior Manager and Veterinary Geneticist at Mars Petcare.

The global petcare industry is significantly expanding, with North America sales alone expected to hit US $300 billion by 2025. And while we may associate the Mars Corporation, the world’s largest candy company, with leading confectionary brands like Milky Way, M&M’s, Skittles, Snickers, Twix, etc. They also happen to be one of the world’s largest companies in pet care as well.

Computational molecular physics (CMP) aims to leverage the laws of physics to understand not just static structures but also the motions and actions of biomolecules. Applying CMP to proteins has required either simplifying the physical models or running simulations that are shorter than the time scale of the biological activity. Brini et al. reviewed advances that are moving CMP to time scales that match biological events such as protein folding, ligand unbinding, and some conformational changes. They also highlight the role of blind competitions in driving the field forward. New methods such as deep learning approaches are likely to make CMP an increasingly powerful tool in describing proteins in action.

Science, this issue p.

### BACKGROUND

The biggest computer chip in the world is so fast and powerful it can predict future actions “faster than the laws of physics produce the same result.”

That’s according to a post by Cerebras Systems, a that made the claim at the online SC20 supercomputing conference this week.

Working with the U.S. Department of Energy’s National Energy Technology Laboratory, Cerebras designed what it calls “the world’s most powerful AI compute system.” It created a massive chip 8.5 inch-square chip, the Cerebras CS-1, housed in a refrigerator-sized computer in an effort to improve on deep-learning training models.

Code Unto Caesar

Durendal’s algorithm wrote scripture about three topics: “the plague,” “Caesar,” and “the end of days.” So it’s not surprising that things took a grim turn. The full text is full of glitches characteristic of AI-written texts, like excerpts where over half of the nouns are “Lord.” But some passages are more coherent and read like bizarre doomsday prophecies.

For example, from the plague section: “O LORD of hosts, the God of Israel; When they saw the angel of the Lord above all the brethren which were in the wilderness, and the soldiers of the prophets shall be ashamed of men.”