Toggle light / dark theme

Solution-processed semiconductor nanocrystals are also called colloidal quantum dots (QDs). While the concept of size-dependent quantum effects had long been known to physicists, a sculpture of the theory into real nanodimensional objects remained impossible till the discovery of QDs. The size-dependent colors of QDs are essentially naked-eye, ambient-condition visualizations of the quantum size effect.

Superconductors, known for enabling lossless electrical conductivity and even magnetic levitation, typically function only at extremely low temperatures. Recent research has identified electron pairing, a core superconductor behavior, in materials at higher-than-expected temperatures, such as an antiferromagnetic insulator.

This discovery by SLAC and Stanford researchers could lead to new ways to develop superconductors that operate closer to room temperature, potentially revolutionizing technology in many fields including quantum computing and transportation.

Exploring the Enigma of Superconductors.

There is a theory dubbed “quantum consciousness,” which stipulates that brain functions and consciousness are derived from quantum effects like the collapse of the quantum wavefunction.

This is a strange part of quantum physics, where particles go from a state of simultaneous properties to a more “normal” state where they have one defined characteristic. It has notably been popularized by the concept of Schrödinger’s cat.

Quantum simulation enables scientists to simulate and study complex systems that are challenging or even impossible using classical computers across various fields, including financial modeling, cybersecurity, pharmaceutical discoveries, AI and machine learning. For instance, exploring molecular vibronic spectra is critical in understanding the molecular properties in molecular design and analysis.

Entanglement is a fundamental concept in quantum information theory and is often regarded as a key indicator of a system’s “quantumness”. However, the relationship between entanglement and quantum computational power is not straightforward. In a study posted on the arXiv preprint server, physicists in Germany, Italy and the US shed light on this complex relationship by exploring the role of a property known as “magic” in entanglement theory. The study’s results have broad implications for various fields, including quantum error correction, many-body physics and quantum chaos.

Traditionally, the more entangled your quantum bits (qubits) are, the more you can do with your quantum computer. However, this belief – that higher entanglement in a quantum state is associated with greater computational advantage – is challenged by the fact that certain highly entangled states can be efficiently simulated on classical computers and do not offer the same computational power as other quantum states. These states are often generated by classically simulable circuits known as Clifford circuits.

\r \r

Peel apart a smartphone, fitness tracker or virtual reality headset, and inside you’ll find a tiny motion sensor tracking its position and movement. Bigger, more expensive versions of the same technology, about the size of a grapefruit and a thousand times more accurate, help navigate ships, airplanes and other vehicles with GPS assistance.

Now, scientists are attempting to make a motion sensor so precise it could minimize the nation’s reliance on global positioning satellites. Until recently, such a sensor — a thousand times more sensitive than today’s navigation-grade devices — would have filled a moving truck. But advancements are dramatically shrinking the size and cost of this technology.

For the first time, researchers from Sandia National Laboratories have used silicon photonic microchip components to perform a quantum sensing technique called atom interferometry, an ultra-precise way of measuring acceleration. It is the latest milestone toward developing a kind of quantum compass for navigation when GPS signals are unavailable.

Researchers have successfully demonstrated negative entanglement entropy using classical electrical circuits as stand-ins for complex quantum systems, providing a practical model for exploring exotic quantum phenomena and advancing quantum information technology.

Entanglement entropy quantifies the degree of interconnectedness between different parts of a quantum system. It indicates how much information about one part reveals about another, uncovering hidden correlations between particles. This concept is essential for advancing quantum computing and quantum communication technologies.

To understand what negative entanglement entropy means, we will first need to know what entanglement and entropy are.