Toggle light / dark theme

Rigorous approach quantifies and verifies almost all quantum states

Quantum information systems, systems that process, store or transmit information leveraging quantum mechanical effects, could, in principle, outperform classical systems in some optimization, computational, sensing, and learning tasks. An important aspect of quantum information science is the reliable quantification of quantum states in a system, to verify that they match desired (i.e., target) states.

Why some quantum materials stall while others scale

People tend to think of quantum materials—whose properties arise from quantum mechanical effects—as exotic curiosities. But some quantum materials have become a ubiquitous part of our computer hard drives, TV screens, and medical devices. Still, the vast majority of quantum materials never accomplish much outside of the lab.

What makes certain commercial successes and others commercially irrelevant? If researchers knew, they could direct their efforts toward more promising materials—a big deal since they may spend years studying a single material.

Now, MIT researchers have developed a system for evaluating the scale-up potential of quantum materials. Their framework combines a material’s quantum behavior with its cost, supply chain resilience, environmental footprint, and other factors.

SCP-239: The Child Who Can Rewrite Reality | The Science and Ethics of a Sleeping God

Can a child’s imagination alter the laws of physics? In this speculative science essay, we explore SCP-239, “The Witch Child” — a sleeping eight-year-old whose mind can reshape matter, rewrite probability, and collapse reality itself.

We examine how the SCP Foundation’s containment procedures—from telekill alloys to induced comas—reflect humanity’s struggle to contain a consciousness powerful enough to bend the universe. Through philosophy, ethics, and quantum speculation, this essay asks:
What happens when belief becomes a force of nature?

🎓 About the Series.
This video is part of our Speculative Science series, where we analyze anomalous phenomena through physics, cognitive science, and ethics.

📅 New speculative science videos every weekday at 6 PM PST / 9 PM EST.
🔔 Subscribe and turn on notifications to stay at the edge of what’s possible.

💬 Share your theories in the comments below:
Should SCP-239 remain asleep forever, or does humanity have a moral duty to understand her?

#SCP239 #SpeculativeScience #TheWitchChild #SCPFoundation #ScienceFiction #Philosophy #AIExplained #Ethics #SciFiEssay #LoreExplained

Anomalous metal sheds light on ‘impossible’ state between superconductivity and insulation

Researchers at the Niels Bohr Institute, University of Copenhagen, steered very thin conductors from superconductivity to insulation—creating an “impossible,” strange state between the two mutually exclusive states.

Materials research is absolutely crucial when dealing with quantum states. Whatever material is used as the basis for creating controllable quantum states, like if you want to build applications using quantum states for computing, sensing, or communication, the materials often define to what extent you can eliminate the ever-present noise that disturbs or even disrupts the desired “clean” quantum states or signals. It is an ongoing battle.

The team led by Saulius Vaitiekenas, associate professor at the Niels Bohr Institute, has succeeded in creating what is supposed to be an impossible intermediate state between superconductor = absolutely no resistance or loss of electrical connection—and total insulation = complete shut-off of the electrical signal.

Researchers achieve atomic-scale control of quantum interference

In a study published in Nature Communications, a research team demonstrates the all-electrical control of quantum interference in individual atomic spins on a surface.

Quantum interference arises when a system exists in a superposition of states, with relative phases producing constructive or . An example is Landau-Zener-Stückelberg-Majorana (LZSM) interference, which arises when a quantum two-level system is repeatedly driven through an anticrossing in the energy-level diagram, and undergoes multiple nonadiabatic transitions.

This mechanism is a powerful tool for fast and reliable quantum control, but it remains a significant challenge to achieve tunable LZSM interference in an atomic-scale quantum architecture where multiple spins can be precisely assembled and controllably coupled on demand.

Quantum crystals offer a blueprint for the future of computing and chemistry

Imagine industrial processes that make materials or chemical compounds faster, cheaper, and with fewer steps than ever before. Imagine processing information in your laptop in seconds instead of minutes or a supercomputer that learns and adapts as efficiently as the human brain. These possibilities all hinge on the same thing: how electrons interact in matter.

A team of Auburn University scientists has now designed a new class of materials that gives scientists unprecedented control over these tiny particles. Their study, published in ACS Materials Letters, introduces the tunable coupling between isolated-metal molecular complexes, known as solvated electron precursors, where electrons aren’t locked to atoms but instead float freely in open spaces.

From their key role in energy transfer, bonding, and conductivity, electrons are the lifeblood of chemical synthesis and modern technology. In , electrons drive redox reactions, enable bond formation, and are critical in catalysis. In technological applications, manipulating the flow and interactions between electrons determines the operation of electronic devices, AI algorithms, photovoltaic applications, and even . In most materials, electrons are bound tightly to atoms, which limits how they can be used. But in electrides, electrons roam freely, creating entirely new possibilities.

SCP-3812: The Entity That Broke Reality | The Science of a God Who Knows It’s Fiction

What happens when awareness grows too powerful for the universe that contains it?

SCP-3812 — also known as A Voice Behind Me — is the Foundation’s ultimate paradox: a being that rewrites existence every time it tries to understand itself. This speculative science essay explores the physics, metaphysics, and philosophy behind the phenomenon. From quantum observer effects to pancomputational cosmology, from the breakdown of time to the collapse of narrative itself, we ask the ultimate question:

What if consciousness doesn’t live inside reality, but creates it?

Join us as we explore:

- The origin of Sam Howell and post-mortem evolution of awareness.
- The science of unreality and the hierarchy of dimensions.
- Schizophrenia as multiversal cognition.
- Supersession, recursion, and the limits of containment.
- The final collapse of reality into pure perception.

If you love speculative science, existential philosophy, or cosmic horror wrapped in logic, this video will change the way you think about reality.

/* */