Menu

Blog

Archive for the ‘quantum physics’ category: Page 78

Jun 19, 2024

Physicists find a new way to represent π

Posted by in categories: particle physics, quantum physics

While investigating how string theory can be used to explain certain physical phenomena, scientists at the Indian Institute of Science (IISc) have stumbled upon on a new series representation for the irrational number π. It provides an easier way to extract π from calculations involved in deciphering processes like the quantum scattering of high-energy particles.

Jun 19, 2024

A method to reversibly control Casimir forces using external magnetic fields

Posted by in categories: materials, quantum physics

The so-called Casimir force or Casimir effect is a quantum mechanical phenomenon resulting from fluctuations in the electromagnetic field between two conducting or dielectric surfaces that are a short distance apart. Studies have shown that this force can be either be attractive or repulsive, depending on the dielectric and magnetic properties of the materials used in experiments.

Jun 19, 2024

Vortex Power: The Swirl of Light Revolutionizing Quantum Computing

Posted by in categories: climatology, computing, quantum physics, space

Researchers at the Weizmann Institute of Science discovered a new type of vortex formed by photon interactions, which could advance quantum computing.

Vortex Phenomena

Continue reading “Vortex Power: The Swirl of Light Revolutionizing Quantum Computing” »

Jun 18, 2024

How Classical AI is ‘Saving’ Quantum Computing: A Talk with IBM’s Ismael Faro

Posted by in categories: quantum physics, robotics/AI

The Quantum Insider (TQI) is the leading online resource dedicated exclusively to Quantum Computing.

Jun 18, 2024

Study proposes new constraints on exotic spin-spin-velocity-dependent interactions between electron spins

Posted by in categories: electronics, quantum physics

A research team has utilized solid-state spin quantum sensors to scrutinize exotic spin-spin-velocity-dependent interactions (SSIVDs) at short force ranges, reporting new experimental results between electron spins. Their work has been published in Physical Review Letters.

Jun 18, 2024

Squeezing Schrödinger’s cat may increase quantum sensitivity

Posted by in category: quantum physics

One of the most counter-intuitive aspects of quantum physics is the idea that a quantum system, unlike a physical system governed by the everyday physics of the macroscopic universe, can exist in two states at once even if these states are contradictory.

Jun 18, 2024

Shattering the Limits of Classical Physics: Quantum Entanglement Measures Earth’s Rotation Like Never Before

Posted by in categories: innovation, quantum physics

A quantum physics experiment at the University of Vienna achieved groundbreaking precision in measuring Earth’s rotation using entangled photons.

The study utilizes an enhanced optical Sagnac interferometer that leverages quantum entanglement to detect rotational effects with unprecedented precision, offering potential breakthroughs in both quantum mechanics and general relativity.

Pioneering Quantum Experiment

Jun 18, 2024

Quantum Chill: Developing Japan’s First “Cold (Neutral) Atom” Quantum Computers

Posted by in categories: computing, finance, particle physics, quantum physics

The Institute for Molecular Science has launched a Commercialization Preparatory Platform, in collaboration with 10 industry partners, to accelerate the development of “cold (neutral) atom” quantum computers.

Institute for Molecular Science (IMS), National Institutes of Natural Sciences, has established a “Commercialization Preparatory Platform (PF)” to accelerate the development of novel quantum computers, based on the achievement of a research group led by Prof. Kenji Ohmori. The launch of the PF was made possible by collaboration with 10 industry partners, including companies and financial institutions.

The 10 partners that joined the PF include (listed alphabetically): blueqat Inc., Development Bank of Japan Inc., Fujitsu Limited, Groovenauts, Inc., Hamamatsu Photonics K.K., Hitachi, Ltd., and NEC Corporation.

Jun 17, 2024

Building quantum computers just got easier with new technique

Posted by in categories: computing, internet, quantum physics

Researchers have devised a new method of building quantum computers, creating and “annihilating” qubits on demand, using a femtosecond laser to dope silicon with hydrogen.

This breakthrough could pave the way for quantum computers that use programmable optical qubits or “spin-photon qubits” to connect quantum nodes across a remote network.

In turn, this creates a quantum internet that is more secure and capable of transmitting more data than current optical-fiber information technologies.

Jun 17, 2024

From Common White Powder to Quantum Innovation: Unlocking Nearly Noiseless Qubits

Posted by in categories: chemistry, computing, engineering, particle physics, quantum physics

Researchers discovered that bismuth atoms embedded in calcium oxide can function as qubits for quantum computers, providing a low-noise, durable, and inexpensive alternative to current materials. This groundbreaking study highlights its potential to transform quantum computing and telecommunications.

Calcium oxide is an inexpensive, chalky chemical compound frequently used in the manufacturing of cement, plaster, paper, and steel. However, the common material may soon have a more high-tech application.

Scientists used theoretical and computational approaches to discover how tiny, lone atoms of bismuth embedded within solid calcium oxide can act as qubits — the building blocks of quantum computers and quantum communication devices. These qubits were described by University of Chicago Pritzker School of Molecular Engineering researchers and their collaborator in Sweden on June 6 in the scientific journal Nature Communications.

Page 78 of 838First7576777879808182Last