Toggle light / dark theme

Researchers Demonstrate Microwave-Optical Entanglement via Mechanical Interface

#quantum #photonics


COPENHAGEN, April 3, 2020 — Using lasers, researchers at the Niels Bohr Institute at the University of Copenhagen have developed a way to entangle electromagnetic fields from microwave radiation and optical beams. Creating entanglement between microwave and optical fields could help scientists solve the challenge of sharing entanglement between two distant quantum computers operating in the microwave regime.

Real life ‘shrink ray’ can reduce 3D structures

Could used for anything to reduce size just like an ant man suit :3.


Scientists can put all kinds of useful materials in the polymer before they shrink it such as metals, quantum dots and DNA. Pictured is the machine used to shrink objects.

The polyacrylate forms the scaffold over which other materials can be attached.

It is then bathed in a solution that contains molecules of fluorescein, which attach to the scaffold when they are activated by laser light.

Quantum biology revisited

This could lead to biological teleportation. :3.


Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.

Over the past decade, the field of quantum biology has seen an enormous increase in activity, with detailed studies of phenomena ranging from the primary processes in vision and photosynthesis to avian navigation (1, 2). In principle, the study of quantum effects in complex biological systems has a history stretching back to the early years of quantum mechanics (3); however, only recently has it truly taken center stage as a scientifically testable concept. While the overall discussion has wide-ranging ramifications, for the purposes of this Review, we will focus on the subfield where the debate is most amenable to direct experimental tests of purported quantum effects—photosynthetic light harvesting.

In femtosecond multidimensional spectroscopy of several pigment-protein complexes (PPCs), we find what has been widely considered the experimental signature of nontrivial quantum effects in light harvesting: oscillatory signals—the spectroscopic characteristic of “quantum coherence.” These signals, or rather their interpretation with the associated claims of a direct link to the system’s “quantumness” (4), have drawn enormous attention, much of it from scientists outside the immediate community of photosynthetic light harvesting (5). While significant efforts have been spent on interpreting these weak signals, the overall debate has raised important questions of a general nature (6). What is uniquely “quantum” in biology? What “nontrivial quantum effects” can be considered as the origin of observable biological phenomena?

New measurements reveal evidence of elusive particles in a newly-discovered superconductor

Particle chasing—it’s a game that so many physicists play. Sometimes the hunt takes place inside large supercolliders, where spectacular collisions are necessary to find hidden particles and new physics. For physicists studying solids, the game occurs in a much different environment and the sought-after particles don’t come from furious collisions. Instead, particle-like entities, called quasiparticles, emerge from complicated electronic interactions that happen deep within a material. Sometimes the quasiparticles are easy to probe, but others are more difficult to spot, lurking just out of reach.

New measurements show evidence for the presence of exotic Majorana particles on the surface of an unconventional superconductor, Uranium ditelluride. Graphic provided by Dr. E. Edwards, Managing Director of Illinois Quantum Information Science and Technology Center (IQUIST).

Now a team of researchers at the University of Illinois, led by physicist Vidya Madhavan, in collaboration with researchers from the National Institute of Standards and Technology, the University of Maryland, Boston College, and ETH Zurich, have used high-resolution microscopy tools to peer at the inner-workings of an unusual type of superconductor, uranium ditelluride (UTe2). Their measurements reveal strong evidence that this material may be a natural home to an exotic quasiparticle that’s been hiding from physicists for decades. The study is published in the March 26 issue of Nature.

Quantum computing at the nanoscale

It’s been said that quantum computing will be like going from candlelight to electric light in the way it will transform how we live. Quite a picture, but what exactly is quantum computing?

For the answer to that question, we’ll have to visit a scale of existence so small that the usual rules of physics are warped, stretched and broken, and there are few layperson terms to lean on. Strap yourself in.

Luckily, we have a world-leading researcher in quantum computing, Professor David Reilly, to guide us. “Most modern technologies are largely based on electromagnetism and Newtonian mechanics,” says Reilly in a meeting room at the University’s Nano Hub. “Quantum computing taps into an enormous new area of nano physics that we haven’t harnessed yet.”

Quantum Computers: Should We Be Prepared?

Some foresee quantum computers will come to solve some of the world’s most serious issues. However, others accept that the advantages will be exceeded by the downsides, for example, cost or that quantum computers basically can’t work, incapable to play out the complexities demanded of them in the manner we envision. The integral factor will be if the producers can guarantee ‘quantum supremacy’ by accomplishing low error rates for their machines and outperforming current computers.

Hollywood has made numerous anticipations with respect to the future and artificial intelligence, some disturbing, others empowering. One of the most quickly developing research areas takes a look at the use of quantum computers in molding artificial intelligence. Actually, some consider machine learning the yardstick by which the field is estimated.

The idea of machine learning, to ‘learn’ new data without express explicit instruction or programming has existed since 1959, in spite of the fact that we still haven’t exactly shown up at the vision set somewhere by the likes of Isaac Asimov and Arthur C. Clarke. In any case, the conviction is that quantum computing will help accelerate our advancement right now. What was at one time a periphery thought evaded by the more extensive science community, has developed to turn into a well known and practical field worthy of serious investment.