Menu

Blog

Archive for the ‘quantum physics’ category: Page 639

May 11, 2018

Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors

Posted by in categories: computing, particle physics, quantum physics

Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing.

Majorana fermions —particles being their own antiparticles—have recently attracted renewed interest in various fields of physics. In condensed matter systems, Majorana bound states (MBS) with a non-Abelian quantum exchange statistics have been proposed as a key element for topological quantum computing (2–4). One of the most promising platforms to realize MBS are one-dimensional (1D) helical spin systems being proximity-coupled to a conventional s-wave superconductor (5–9). In such a surface-confined system, the MBS can directly be investigated by local probe techniques such as scanning tunneling microscopy/spectroscopy (STM/STS). Previously reported experiments aiming at the direct visualization and probing of the MBS have focused on self-assembled magnetic chains on superconducting Pb substrates (10–15).

Read more

May 11, 2018

This is the most important tech contest since the space race, and America is losing

Posted by in category: quantum physics

China is moving ahead on quantum technology.

Read more

May 10, 2018

Microsoft predicts five-year wait for quantum computing in Azure

Posted by in categories: computing, quantum physics

Read more

May 10, 2018

Light could make semiconductor computers a million times faster or even go quantum

Posted by in categories: computing, quantum physics

A technique to manipulate electrons with light could bring quantum computing up to room temperature.

A team of researchers in Germany and at the University of Michigan have demonstrated how can shift electrons between two different , the classic 1 and 0, in a thin sheet of semiconductor.

Continue reading “Light could make semiconductor computers a million times faster or even go quantum” »

May 9, 2018

This Random Videogame Powers Quantum Entanglement Experiments

Posted by in categories: entertainment, quantum physics

How a simplistic keyboard-mashing game recruited thousands of players—for physics!

Read more

May 4, 2018

Does Mystery of Quantum Physics Prove God Exists?

Posted by in categories: cosmology, general relativity, particle physics, philosophy, quantum physics, science

Ironically, my more popular posts are ones furthest from my passion and core interests. They are larks—never intended to go viral. This is about one of them…

Apart from family, I typically steer clear of religious topics. I identify with a mainstream religion, but it is completely beside the purpose of Lifeboat Foundation, and it is a personal affair.[1]

Yet, here we discuss a religious topic, after all. Let’s get started…


Question

Continue reading “Does Mystery of Quantum Physics Prove God Exists?” »

May 3, 2018

The Energy Department is Investing $30 Million in Quantum Research

Posted by in categories: computing, quantum physics

Is quantum computing the next big thing? Energy thinks it may be.

Read more

May 2, 2018

Nobody knows how far off useful quantum computers are: Here’s why

Posted by in categories: computing, quantum physics

The recent breakthroughs in quantum physics expand on work down nearly two decades ago. So how far away are useful quantum computers?

Read more

May 1, 2018

If quantum computers threaten blockchains, quantum blockchains could be the defense

Posted by in categories: bitcoin, business, computing, encryption, quantum physics

Business Impact

If quantum computers threaten blockchains, quantum blockchains could be the defense.

Quantum computers could break the cryptography that conventional blockchains rely on. Now physicists say a way of entangling the present with the past could foil this type of attack.

Continue reading “If quantum computers threaten blockchains, quantum blockchains could be the defense” »

May 1, 2018

A new physics discovery could change the game for quantum computing

Posted by in categories: computing, mathematics, particle physics, quantum physics

From tunneling through impenetrable barriers to being in two places at the same time, the quantum world of atoms and particles is famously bizarre. Yet the strange properties of quantum mechanics are not mathematical quirks—they are real effects that have been seen in laboratories over and over.

One of the most iconic features of quantum mechanics is “entanglement”—describing particles that are mysteriously linked regardless of how far away from each other they are. Now three independent European research groups have managed to entangle not just a pair of particles, but separated clouds of thousands of atoms. They’ve also found a way to harness their technological potential.

When particles are entangled they share properties in a way that makes them dependent on each other, even when they are separated by large distances. Einstein famously called entanglement “spooky action at a distance,” as altering one particle in an entangled pair affects its twin instantaneously—no matter how far away it is.

Continue reading “A new physics discovery could change the game for quantum computing” »