Toggle light / dark theme

Superconductivity for addressing global challenges

High‑energy physics has always been one of the main drivers of progress in superconducting science and technology. None of the flagship accelerators that have shaped modern particle physics could have succeeded without large‑scale superconducting systems. CERN continues to lead the efforts in this field. Its next accelerator, the High‑Luminosity LHC, relies on high-grade superconductors that were not available in industry before they were developed for high-energy physics. Tomorrow’s colliders will require a new generation of high‑temperature superconductors (HTS) to be able to realise their research potential with improved energy efficiency and long‑term sustainability.

Beyond the physics field, next‑generation superconductors have the potential to reshape key technological sectors. Their ability to transmit electricity without resistance, generate intense magnetic fields and operate efficiently at high temperatures makes them suitable for applications in fields as diverse as healthcare, mobility, computing, novel fusion reactors, zero‑emission transport and quantum technologies. This wide range of applications shows that advances driven by fundamental physics can generate broad societal impact far beyond the laboratory.

The Catalysing Impact – Superconductivity for Global Challenges event seeks to accelerate the transition from science to societal applications. By bringing together top-level researchers, industry leaders, policymakers and investors, the event provides a structured meeting point for technical expertise and strategic financing. Its purpose is not simply to present progress but to build bridges across sectors, disciplines and funding landscapes in order to move superconducting technologies from early demonstrations to impactful applications.

Single-crystalline monolayer semiconductors with coherent quantum transport by vicinal van der Waals epitaxy

By controlling the coalescence of multiple unidirectional grains on vicinal sapphire substrates, wafer-scale channels of single-crystalline molybdenum disulfide can be grown, which exhibit coherent quantum transport across large length scales.

X-Ray Imaging Uncovers Hidden Structures in Liquid-Metal-Grown Crystals

The delicate internal structure of platinum crystals growing in liquid metal has been revealed, according to new research employing a powerful X-ray technique that reveals new implications for quantum computing.

UNSW Professor Kourosh Kalantar-Zadeh, with the University of New South Wales (UNSW), led the study, which was reported in a recent paper in Nature Communications. The team behind the project has a history of specializing in exploiting liquid metals to produce new materials and green catalysts that improve industrial chemical reactions.

Physicist delineates limits on the precision of quantum thermal machines

Quantum thermal machines are devices that leverage quantum mechanical effects to convert energy into useful work or cooling, similarly to traditional heat engines or refrigerators. Thermodynamics theory suggests that increasing the reliability with which all thermal machines produce the same thermodynamic processes in time comes at a cost, such as the wasted heat or the need for extra energy.

Drawing from theories and concepts rooted in thermodynamics, physicist Yoshihiko Hasegawa at the University of Tokyo recently set out to pinpoint the limits that would constrain the precision of finite-dimensional quantum thermal machines. In a recent paper, published in Physical Review Letters, he delineates these limits and shows that quantum coherence could reduce fluctuations, improving the accuracy of quantum thermal machines.

“Thermodynamic uncertainty relations have clarified an important ‘no free lunch’ principle: if you want an operation to be more precise, you must pay more thermodynamic cost, i.e., entropy production,” Hasegawa told Phys.org. “However, those thermodynamic uncertainty relations do not forbid, in principle, pushing entropy production arbitrarily high.

Diamond defects, now in pairs, reveal hidden fluctuations in the quantum world

In spaces smaller than a wavelength of light, electric currents jump from point to point and magnetic fields corkscrew through atomic lattices in ways that defy intuition. Scientists have only ever dreamed of observing these marvels directly.

Now Princeton researchers have developed a diamond-based quantum sensor that reveals rich new information about magnetic phenomena at this minute scale. The technique uncovers fluctuations that are beyond the reach of existing instruments and provides key insight into materials such as graphene and superconductors. Superconductors have enabled today’s most advanced medical imaging tools and form the basis of hoped-for technologies like lossless powerlines and levitating trains.

The underlying diamond-based sensing methods have been under development for half a decade. But in a Nov. 27 paper in Nature, the team reported roughly 40 times greater sensitivity than previous techniques.

/* */