Toggle light / dark theme

I believe that schizophrenia although an illness could be a quantum sense in the quantum realm essentially feeling different dimensions which still remain unknown. The minds developed by the military in different projects like the stranger things series is an example of such a wild reality we live in and how interesting dimensions beyond ours touch our reality.


To the average person, most quantum theories sound strange, while others seem downright bizarre. There are many diverse theories that try to explain the intricacies of quantum systems and how our interactions affect them. And, not surprisingly, each approach is supported by its group of well-qualified and well-respected scientists. Here, we’ll take a look at the two most popular quantum interpretations.

Does it seem reasonable that you can alter a quantum system just by looking at it? What about creating multiple universes by merely making a decision? Or what if your mind split because you measured a quantum system?

You might be surprised that all or some of these things might routinely happen millions of times every day without you even realizing it.

Physics has long looked to harmony to explain the beauty of the Universe. But what if dissonance yields better insights?


Quantum physics is weird and counterintuitive. For this reason, the word ‘quantum’ has become shorthand for anything powerful or mystical, whether or not it has anything whatsoever to do with quantum mechanics. As a quantum physicist, I’ve developed a reflexive eyeroll upon hearing the word applied to anything outside of physics. It’s used to describe homeopathy, dishwasher detergents and deodorant.

If I hadn’t first heard of Quantum Music from a well-respected physicist, I would have scoffed the same way I did at the other ridiculous uses of the word. But coming from Klaus Mølmer it was intriguing. In the Quantum Music project, physicists and musicians worked together to unite ‘the mysterious worlds of quantum physics and music for the first time’. They developed a device that attaches to each key of a piano so that, when the pianist plays, the information is piped to a computer and synthesiser, which plays ‘quantum’ tones in addition to the familiar reverberations in the piano.

Among the tones used are those that represent a very quantum object: a Bose-Einstein condensate (BEC). This is a cloud of atoms that have been cooled down to just above absolute zero. At this low temperature, the microscopic quantum properties of the individual particles can all be treated collectively as a single, macroscopic quantum entity. Studying BECs is a way of examining the consequences of quantum mechanics on a larger scale than is typically possible.

Researchers have discovered the most precise way to control individual ions using holographic optical engineering technology.

The new technology uses the first known holographic optical engineering device to control trapped ion qubits. This technology promises to help create more precise controls of qubits that will aid the development of quantum industry-specific hardware to further new quantum simulation experiments and potentially quantum error correction processes for trapped ion qubits.

“Our algorithm calculates the hologram’s profile and removes any aberrations from the light, which lets us develop a highly precise technique for programming ions,” says lead author Chung-You Shih, a Ph.D. student at the University of Waterloo’s Institute for Quantum Computing (IQC).

In a feat worthy of a laboratory conceived by J.K. Rowling, MIT researchers and colleagues have turned a “magic” material composed of atomically thin layers of carbon into three useful electronic devices. Normally, such devices, all key to the quantum electronics industry, are created using a variety of materials that require multiple fabrication steps. The MIT approach automatically solves a variety of problems associated with those more complicated processes.

As a result, the work could usher in a new generation of quantum for applications including quantum computing. Further, the devices can be superconducting, or conduct electricity without resistance. They do so, however, through an unconventional mechanism that, with further study, could give new insights into the physics of superconductivity. The researchers report their results in the May 3, 2021 issue of Nature Nanotechnology.

“In this work we have demonstrated that magic angle is the most versatile of all , allowing us to realize in a single system a multitude of quantum electronic devices. Using this advanced platform, we have been able to explore for the first time novel superconducting physics that only appears in two dimensions,” says Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT and leader of the work. Jarillo-Herrero is also affiliated with MIT’s Materials Research Laboratory.

Recently, scientists designed an AI agent that learns 60% faster than its peers by combining quantum and classical computing. 📈


This week, an international collaboration led by Dr. Philip Walther at the University of Vienna took the “classic” concept of reinforcement learning and gave it a quantum spin. They designed a hybrid AI that relies on both quantum and run-of-the-mill classic computing, and showed that—thanks to quantum quirkiness—it could simultaneously screen a handful of different ways to solve a problem.

The result is a reinforcement learning AI that learned over 60 percent faster than its non-quantum-enabled peers. This is one of the first tests that shows adding quantum computing can speed up the actual learning process of an AI agent, the authors explained.

Although only challenged with a “toy problem” in the study, the hybrid AI, once scaled, could impact real-world problems such as building an efficient quantum internet. The setup “could readily be integrated within future large-scale quantum communication networks,” the authors wrote.

Breakthrough in quantum chemistry has implications for quantum technology.


Quantum technology has a lot of promise, but several research barriers need to be overcome before it can be widely used. A team of US researchers has advanced the field another step, by bringing multiple molecules into a single quantum state at the same time.

A Bose-Einstein condensate is a state of matter that only occurs at very low temperatures – close to absolute zero. At this temperature, multiple particles can clump together and behave as though they were a single atom – something that could be useful in quantum technology. But while scientists have been able to get single atoms into this state for decades, they hadn’t yet achieved it with molecules.

“Atoms are simple spherical objects, whereas molecules can vibrate, rotate, carry small magnets,” says Cheng Chin, a professor of physics at the University of Chicago, US. “Because molecules can do so many different things, it makes them more useful, and at the same time much harder to control.”

Protocol to reverse engineer Hamiltonian models advances automation of quantum devices.

Scientists from the University of Bristol ’s Quantum Engineering Technology Labs (QETLabs) have developed an algorithm that provides valuable insights into the physics underlying quantum systems — paving the way for significant advances in quantum computation and sensing, and potentially turning a new page in scientific investigation.

In physics, systems of particles and their evolution are described by mathematical models, requiring the successful interplay of theoretical arguments and experimental verification. Even more complex is the description of systems of particles interacting with each other at the quantum mechanical level, which is often done using a Hamiltonian model. The process of formulating Hamiltonian models from observations is made even harder by the nature of quantum states, which collapse when attempts are made to inspect them.

Scientists from the University of Bristol’s Quantum Engineering Technology Labs (QETLabs) have developed an algorithm that provides valuable insights into the physics underlying quantum systems—paving the way for significant advances in quantum computation and sensing, and potentially turning a new page in scientific investigation.