Menu

Blog

Archive for the ‘quantum physics’ category: Page 558

Dec 16, 2019

How to use entanglement for long-distance or free-space quantum communication

Posted by in categories: encryption, internet, quantum physics

Entanglement, once called “spooky action at a distance” by Einstein, is the phenomenon in which the quantum states of separated particles cannot be described independently. This puzzling phenomenon is widely exploited in the quantum physicist’s toolbox, and is a key resource for applications in secure quantum communication over long distances and quantum cryptography protocols. Unfortunately, entangled particles are easily disturbed by their surroundings, and their entanglement is readily diminished by the slightest interaction with the environment.

In a recent study published in the journal Physical Review X, an international team of physicists from Austria, Scotland, Canada, Finland and Germany have demonstrated how quantum can be strengthened to overcome particle loss or very high levels of noise, which are inevitable in real-life applications outside the laboratory. This strengthening is accomplished by departing from commonly used two-level quantum bits, or qubits. Qubits are bi-dimensional systems, the quantum analogue to the classical bit, with values zero or one. In this study, the researchers instead employed entanglement of systems with more than two levels. By entangling particles of light through their spatial and temporal properties, scientists have now observed the survival of quantum entanglement under harsh environmental conditions for the first time.

When it comes to distributing particles of light outside of a protected laboratory, the environmental conditions are identical to the tested ones. Therefore, the experiment is not only a proof-of-principle implementation, but is ready for long-distance quantum communication under real-world conditions. This new method could hence prove helpful for distributing entanglement in a future quantum internet.

Dec 16, 2019

Quantum Computing Playground

Posted by in categories: computing, quantum physics

Learn about all our projects.

Dec 16, 2019

How the Many-Worlds theory of Hugh Everett split the Universe

Posted by in categories: cosmology, quantum physics

Sean Carroll is a theoretical physicist at the California Institute of Technology. He specialises in quantum mechanics, gravitation, cosmology, statistical mechanics and foundations of physics. His latest book is Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime (2019). He lives in Los Angeles.

2,600 words.

Dec 15, 2019

Why the Many-Worlds Interpretation of Quantum Mechanics Has Many Problems

Posted by in category: quantum physics

The idea that the universe splits into multiple realities with every measurement has become an increasingly popular proposed solution to the mysteries of quantum mechanics. But this “many-worlds interpretation” is incoherent, Philip Ball argues in this adapted excerpt from his new book Beyond Weird.

Dec 14, 2019

Physicists Use Bubbling Quantum Vacuum to Hopscotch Heat Across Empty Space

Posted by in category: quantum physics

Heat isn’t supposed to be able to cross a vacuum without radiation. But in a new experiment, it did.

Dec 13, 2019

This Quantum Lab Makes Exotic States of Matter in Space

Posted by in categories: quantum physics, space

Atomic physicists at NASA are working to create an exotic state of matter in space 🤯

Via Seeker

Dec 12, 2019

Google has performed the biggest quantum chemistry simulation ever

Posted by in categories: chemistry, computing, quantum physics

Google’s Sycamore quantum computer, which recently demonstrated its dominance over ordinary computers, is now breaking records in quantum chemistry.

Dec 12, 2019

Space Heater: Scientists Find New Way to Transfer Energy Through a Vacuum

Posted by in categories: energy, nanotechnology, quantum physics, space

Nanoscale experiments reveal that quantum effects can transmit heat between objects separated by empty space.

Dec 11, 2019

Scientists Just Created Quantum States in Everyday Electronics

Posted by in categories: computing, quantum physics

Quantum computing has the potential to revolutionise the processing power at our fingertips, but for the moment a lot of it is just potential.

Researchers have been uncertain on whether we’ll ever be able to harness quantum computing in a practical, affordable, realistic way. But we might have an exciting new lead.

Two new studies show how quantum technologies can work with everyday electronics – specifically, transmitting quantum information using devices made from silicon carbide, a material which is already used everywhere from LED lights to telescopes.

Dec 11, 2019

Higgs Mode in Superconductors

Posted by in categories: computing, particle physics, quantum physics

This could usher in higgs exotic physics computing that is beyond even quantum computers.


When a continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is recently referred to as the ‘’Higgs mode’’ as it is a condensed-matter analogue of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system.