Menu

Blog

Archive for the ‘quantum physics’ category: Page 531

Jun 5, 2017

Simulations Show Superfluid Helium Behaves Like a Black Hole

Posted by in categories: cosmology, particle physics, quantum physics

A cluster of 64 superfluid helium atoms mimic properties similar to a Black hole. Could this lead to the formation of a unified Quantum Gravity theory?

Read more

May 31, 2017

Researchers develop the first broadband image sensor array based on graphene-CMOS integration

Posted by in categories: computing, mobile phones, quantum physics

Over the past 40 years, microelectronics have advanced by leaps and bounds thanks to silicon and complementary metal-oxide semiconductor (CMOS) technology, enabling computing, smartphones, compact and low-cost digital cameras, as well as most of the electronic gadgets we rely on today.

However, the diversification of this platform into applications other than microcircuits and visible light cameras has been impeded by the difficulty of combining non-silicon semiconductors with CMOS.

IFCO researchers have now overcome this obstacle, showing for the first time the monolithic integration of a CMOS integrated circuit with graphene, resulting in a high-resolution consisting of hundreds of thousands of photodetectors based on graphene and quantum dots (QD). They incorporated it into a digital camera that is highly sensitive to UV, visible and infrared light simultaneously. This has never before been achieved with existing imaging sensors. In general, this demonstration of monolithic integration of graphene with CMOS enables a wide range of optoelectronic applications, such as low-power optical data communications and compact and ultra sensitive sensing systems.

Read more

May 30, 2017

Dark Energy May Lurk in the Nothingness of Space

Posted by in categories: cosmology, quantum physics

The new work addresses not only what dark energy is but why the rate of universal expansion has the value it does.

“Everybody wants to know what dark energy is,” Wang told Live Science. “I reconsidered this question more carefully,” from the perspective of the universe’s energy density.

Wang and his colleagues assumed that modern quantum field theory was correct about the energy density being very large, but that the vacuum fluctuations, or the movements of empty space, were very large on tiny scales, near what is called the Planck length, or 1.62 × 10 ^ minus 35 meters. That’s so small that a proton is 100 million trillion times bigger.

Continue reading “Dark Energy May Lurk in the Nothingness of Space” »

May 27, 2017

Our Quest to Find a One-Sided Magnet Just Took an Unexpected Turn

Posted by in categories: particle physics, quantum physics

Of the many ‘white whales’ that theoretical physicists are pursuing, the elusive magnetic monopole — a magnetic with only one pole — is one of the most confounding.

Compared to the Higgs boson in terms of its potential impact on modern physics, the magnetic monopole has been on scientists’ minds for even longer. And now our best shot at finding it just got weird — two phenomena that resemble the magnetic monopole have become one.

If you’re unfamiliar with the magnetic monopole, it’s a hypothetical particle that’s long been predicted by quantum physics, but no one has ever been able to prove that it exists.

Continue reading “Our Quest to Find a One-Sided Magnet Just Took an Unexpected Turn” »

May 26, 2017

Russian group delivers the first unhackable quantum-safe blockchain

Posted by in categories: bitcoin, cryptocurrencies, cybercrime/malcode, government, particle physics, quantum physics

Quantum computing and the blockchain both get plenty of attention in 2017, and now researchers in Russia have combined the two to create what they claim is an unhackable distributed-ledger platform.

The new technology, described as the “first quantum-safe blockchain,” promises to make it secure for organizations to transfer data without the fear of hacking from even the most powerful computers, in this case, the emerging field of quantum computing. Quantum computers make use of the quantum states of subatomic particles to store information, with the potential to do some calculations far faster than current computers. There’s some dispute whether we have actually reached that point yet, but companies such as Google Inc. are promising that true quantum computing is just around the corner.

“Quantum computers pose a major threat to data security today and could even be used to hack blockchains, destroying everything from cryptocurrencies like bitcoin to secure government communications,” a spokesperson for the Russian Quantum Center told SiliconANGLE. “Because quantum computers can test a large number of combinations at once, they will be able to destroy these digital signatures, leaving the blockchain vulnerable.”

Continue reading “Russian group delivers the first unhackable quantum-safe blockchain” »

May 23, 2017

China’s belt and road infrastructure plan also includes science

Posted by in categories: economics, engineering, nanotechnology, quantum physics, robotics/AI, science, sustainability

China is also planning to use the initiative to flex its scientific and engineering muscles, officials made clear at a 2-day Belt and Road Forum for International Cooperation that ended yesterday in Beijing. “Innovation is an important force powering development,” Xi said in a speech to the opening session of the forum. And so the initiative will include technical cooperation in fields including artificial intelligence, nanotechnology, quantum computing, and smart cities. He also mentioned the need to pursue economic growth that is in line with sustainable development goals, and that rests on environmentally friendly approaches.


Investment also planned in artificial intelligence, nanotechnology, and other fields.

Read more

May 22, 2017

A fundamental quantum physics problem has been proved unsolvable

Posted by in categories: energy, quantum physics

For the first time a major physics problem has been proved unsolvable, meaning that no matter how accurately a material is mathematically described on a microscopic level, there will not be enough information to predict its macroscopic behaviour.

The research, by an international team of scientists from UCL, the Technical University of Music and the Universidad Complutense de Madrid – ICMAT, concerns the spectral gap, a term for the energy required for an electron to transition from a low-energy state to an excited state.

Spectral gaps are a key property in semiconductors, among a multitude of other materials, in particular those with superconducting properties. It was thought that it was possible to determine if a material is superconductive by extrapolating from a complete enough microscopic description of it, however this study has shown that determining whether a material has a spectral gap is what is known as “an undecidable question”.

Continue reading “A fundamental quantum physics problem has been proved unsolvable” »

May 22, 2017

How Do You Code for a Quantum Computer?

Posted by in categories: computing, cosmology, quantum physics

The coders of tomorrow may be bug-checking the multiverse.

Read more

May 17, 2017

IBM builds its most powerful universal quantum computing processors

Posted by in categories: business, computing, education, quantum physics

IBM announced today it has successfully built and tested its most powerful universal quantum computing processors. The first new prototype processor will be the core for the first IBM Q early-access commercial systems. The first upgraded processor will be available for use by developers, researchers, and programmers to explore quantum computing using a real quantum processor at no cost via the IBM Cloud. The second is a new prototype of a commercial processor, which will be the core for the first IBM Q early-access commercial systems.

Launched in March 2017, IBM Q is an industry-first initiative to build commercially available universal quantum for business and science applications. IBM Q systems and services will be delivered via the IBM Cloud platform. IBM first opened public access to its quantum processors one year ago, to serve as an enablement tool for scientific research, a resource for university classrooms, and a catalyst of enthusiasm for the field. To date users have run more than 300,000 quantum experiments on the IBM Cloud.

With the introduction of two new processors today for IBM Q, the company is building the foundation for solving practical problems in business and science that are intractable even with today’s most powerful classical computing systems. The two new IBM-developed processors include:

Continue reading “IBM builds its most powerful universal quantum computing processors” »

May 16, 2017

The human universe: Does consciousness create reality?

Posted by in categories: neuroscience, quantum physics

While not a complete figment of our imagination, the universe may only become real because we’re looking at it.

By Douglas Heaven

Samuel Johnson thought the idea was so preposterous that kicking a rock was enough to silence discussion. “I refute it thus,” he cried as his foot rebounded from reality. Had he known about quantum mechanics, he might have spared himself the stubbed toe.

Continue reading “The human universe: Does consciousness create reality?” »