Menu

Blog

Archive for the ‘quantum physics’ category: Page 434

Nov 17, 2021

New material could be two superconductors in one

Posted by in categories: computing, quantum physics

MIT physicists and colleagues have demonstrated an exotic form of superconductivity in a new material the team synthesized only about a year ago. Although predicted in the 1960s, until now this type of superconductivity has proven difficult to stabilize. Further, the scientists found that the same material can potentially be manipulated to exhibit yet another, equally exotic form of superconductivity.

The work was reported in the Nov. 3 issue of the journal Nature.

The demonstration of finite momentum superconductivity in a layered crystal known a natural superlattice means that the material can be tweaked to create different patterns of superconductivity within the same sample. And that, in turn, could have implications for and more.

Nov 17, 2021

IBM unveils its new 127-qubit Eagle quantum processor

Posted by in categories: computing, quantum physics

It is a major step towards commercial quantum computers outperforming traditional machines.

Nov 16, 2021

No More Silicon? Company Develops Glass CPU for Quantum Computing

Posted by in categories: computing, quantum physics

It seems evaporated glass, chains of ions, and quantum stability go hand in hand.


IonQ has replaced the typical silicon with a fused glass-based chip, allowing for unprecedented levels of scaling for the company’s trapped-ion approach to quantum computing.

Nov 16, 2021

A dynamical quantum Cheshire Cat effect and implications for counterfactual communication

Posted by in categories: particle physics, quantum physics

In quantum mechanics, counterfactual behaviours are generally associated with particles being affected by events taking place where they can’t be found. Here, the authors consider extended quantum Cheshire cat scenarios where a particle can be influenced in regions where only its disembodied property has entered.

Nov 16, 2021

New algorithms advance the computing power of early-stage quantum computers

Posted by in categories: chemistry, computing, information science, quantum physics

A group of scientists at the U.S. Department of Energy’s Ames Laboratory has developed computational quantum algorithms that are capable of efficient and highly accurate simulations of static and dynamic properties of quantum systems. The algorithms are valuable tools to gain greater insight into the physics and chemistry of complex materials, and they are specifically designed to work on existing and near-future quantum computers.

Scientist Yong-Xin Yao and his research partners at Ames Lab use the power of advanced computers to speed discovery in condensed matter physics, modeling incredibly complex quantum mechanics and how they change over ultra-fast timescales. Current high performance computers can model the properties of very simple, small quantum systems, but larger or more rapidly expand the number of calculations a computer must perform to arrive at an , slowing the pace not only of computation, but also discovery.

“This is a real challenge given the current early-stage of existing quantum computing capabilities,” said Yao, “but it is also a very promising opportunity, since these calculations overwhelm classical computer systems, or take far too long to provide timely answers.”

Nov 16, 2021

IBM claims it has made a major breakthrough in constructing a quantum computer

Posted by in categories: computing, particle physics, quantum physics

IBM says it has built a quantum processor that it says cannot be simulated by a classical computer.

If true, the processor would represent a major breakthrough in quantum computing, which its proponents say could lead to radical changes in how we are able to deal with information.

The company says that the quantum processor is so capable that to simulate its capabilities with a traditional computer, one would require more bits than there are atoms in every person in existence.

Nov 16, 2021

Competing quantum interactions enable single molecules to stand up

Posted by in categories: computing, nanotechnology, quantum physics

Nanoscale machinery has many uses, including drug delivery, single-atom transistor technology, or memory storage. However, the machinery must be assembled at the nanoscale, which is a considerable challenge for researchers.

For nanotechnology engineers the ultimate goal is to be able to assemble functional machinery part-by-part at the nanoscale. In the macroscopic world, we can simply grab items to assemble them. It is not impossible to “grab” single anymore, but their quantum nature makes their response to manipulation unpredictable, limiting the ability to assemble molecules one by one. This prospect is now a step closer to reality, thanks to an international effort led by the Research Centre Jülich of the Helmholtz society in Germany, including researchers from the Department of Chemistry at the University of Warwick.

In the paper, “The stabilization potential of a standing molecule,” published today, 10 November 2021 in the journal Science Advances, an international team of researchers has been able to reveal the generic stabilization mechanism of a single standing molecule, which can be used in the rational and of three-dimensional at surfaces.

Nov 15, 2021

Exclusive: IBM achieves quantum computing breakthrough

Posted by in categories: energy, quantum physics, supercomputing

IBM has created a quantum processor able to process information so complex the work can’t be done or simulated on a traditional computer, CEO Arvind Krishna told “Axios on HBO” ahead of a planned announcement.

Why it matters: Quantum computing could help address problems that are too challenging for even today’s most powerful supercomputers, such as figuring out how to make better batteries or sequester carbon emissions.

Driving the news: IBM says its new Eagle processor can handle 127 qubits, a measure of quantum computing power. In topping 100 qubits, IBM says it has reached a milestone that allows quantum to surpass the power of a traditional computer.

Nov 14, 2021

Physicists develop a device that could provide conclusive evidence for the existence (or not) of non-Abelian anyons

Posted by in categories: computing, particle physics, quantum physics

What kinds of ‘particles’ are allowed by nature? The answer lies in the theory of quantum mechanics, which describes the microscopic world.

In a bid to stretch the boundaries of our understanding of the world, UC Santa Barbara researchers have developed a device that could prove the existence of non-Abelian anyons, a that has been mathematically predicted to exist in two-dimensional space, but so far not conclusively shown. The existence of these particles would pave the way toward major advances in topological quantum computing.

In a study that appears in the journal Nature, physicist Andrea Young, his graduate student Sasha Zibrov and their colleagues have taken a leap toward finding conclusive evidence for non-Abelian anyons. Using graphene, an atomically thin material derived from graphite (a form of carbon), they developed an extremely low-defect, highly tunable device in which non-Abelian anyons should be much more accessible. First, a little background: In our three-dimensional universe, elementary particles can be either fermions or bosons: think electrons (fermions) or the Higgs (a boson).

Nov 13, 2021

Scientists detected spooky quantum entanglement in solid materials

Posted by in categories: materials, quantum physics

Scientists demonstrate how quantum entanglement can be witnessed in the quasi-1D Heisenberg antiferromagnet.