QuantWare has delivered its 64-qubit Tenor to the University of Naples Federico II, enabling Italy’s largest quantum computer.

Bloch oscillations are periodic oscillations of quantum particles in a repeating energy “landscape” (e.g., a crystal lattice) that are subjected to a constant force. These particle motions have been the focus of numerous physics studies, as they are intriguing quantum effects that are not predicted by classical mechanics theories.
Probing Bloch oscillations experimentally could thus yield new insight into the fundamental properties of quantum matter. So far, they have been primarily studied in individual particles or two-particle systems, as opposed to quantum many-body systems comprised of several particles.
Researchers at CNRS-ENS-PSL University and Sorbonne University report the observation of collective Bloch oscillations in a one-dimensional (1D) Bose gas, a quantum fluid comprised of bosons, which are particles that can occupy the same quantum state.
Quantum metals are metals where quantum effects—behaviors that normally only matter at atomic scales—become powerful enough to control the metal’s macroscopic electrical properties.
Researchers in Japan have explained how electricity behaves in a special group of quantum metals called kagome metals. The study is the first to show how weak magnetic fields reverse tiny loop electrical currents inside these metals. This switching changes the material’s macroscopic electrical properties and reverses which direction has easier electrical flow, a property known as the diode effect, where current flows more easily in one direction than the other.
Notably, the research team found that quantum geometric effects amplify this switching by about 100 times. The study, published in Proceedings of the National Academy of Sciences, provides the theoretical foundation that could eventually lead to new electronic devices controlled by simple magnets.
Many properties of the world’s most advanced materials are beyond the reach of quantitative modeling. Understanding them also requires a human expert’s reasoning and intuition, which can’t be replicated by even the most powerful artificial intelligence, mixed with fortuitous accident, according to Eun-Ah Kim, the Hans A. Bethe Professor of physics in the College of Arts and Sciences.
Kim and collaborators have developed a machine-learning model that encapsulates and quantifies the valuable intuition of human experts in the quest to discover new quantum materials. The model, Materials Expert-Artificial Intelligence (ME-AI), “bottles” this intuition into descriptors that predict the functional properties of a material. The team used the method to solve a quantum materials problem.
“We are charting a new paradigm where we transfer experts’ knowledge, especially their intuition and insight, by letting an expert curate data and decide on the fundamental features of the model,” said Kim, director of the Cornell-led National Science Foundation AI-Materials Institute. “Then the machine learns from the data to think the way the experts think.”
Experiments at the Relativistic Heavy Ion Collider give the first hints of a critical point in the hot quark–gluon “soup” that is thought to have pervaded the infant Universe.
The strongest force of nature—the one holding nuclear matter together—is described by the theory of quantum chromodynamics (QCD). The fundamental particles of QCD are quarks and gluons, which are normally bound within composite particles called hadrons—the most well-known of which are protons and neutrons. Only at extreme temperatures around 1012 K (a million times hotter than the core of the Sun) can quarks and gluons become deconfined, leading to a new phase of matter called the quark–gluon plasma. At vanishing densities, the transition between confined hadrons and the quark–gluon plasma is known to be ill-defined—happening across a wide range of temperatures rather than at a specific temperature. But theory predicts that at large densities and moderately high temperatures, a critical point exists, where the “fuzziness” disappears and a clear distinction can be made between the gas-like hadrons and the liquid-like quark–gluon mix [1–3].
A new class of highly efficient and scalable quantum low-density parity-check error correction codes, capable of performance approaching the theoretical hashing bound, has been developed by scientists at the Institute of Science, Tokyo, Japan. These novel error correction codes can handle quantum codes with hundreds of thousands of qubits, potentially enabling large-scale fault-tolerant quantum computing, with applications in diverse fields, including quantum chemistry and optimization problems.
Chicago has quickly emerged as a hub for quantum computing, with the state of Illinois and technology companies pouring millions of dollars into developing a campus to build the world’s first commercially viable quantum computer on the city’s Southeast Side.
But what does a quantum computer even look like? And how do they work?
Those are questions that a new exhibit unveiled at Chicago’s O’Hare International Airport seeks to answer. In Terminal 1, near the massive model of a dinosaur skeleton, travelers of all ages paused on their brisk walks through the concourse to look at the model of the inside of a quantum computer, which resembles a large golden chandelier with four “tiers,” copper wiring and a chip at the bottom. On a screen on one side of the fiberglass case protecting the quantum computer, travelers were able to watch a video explaining the science behind it.