Toggle light / dark theme

A Quantum Microscope Reveals Water Breaking Apart

A scheme combining a scanning probe microscope with a quantum sensor can locally trigger water dissociation and observe the elementary steps of such a reaction.

Every experimental technique comes with trade-offs. High-resolution microscopy can pinpoint the positions of individual atoms, yet it typically cannot identify them chemically. Spectroscopy provides chemical information but often only as an averaged signal over a large region. To construct a comprehensive picture of processes at the nanoscale, researchers often resort to combining two or more independent methods. The metaphorical silver bullet would be a single technique that is both local and capable of identifying chemical species as they form and react. Now Wentian Zheng of Peking University and his collaborators have taken an impressive step toward that goal. They have combined two previously separate capabilities—quantum sensing and scanning probe microscopy (SPM)—into a single instrument that can trigger and observe chemical reactions with nanometer resolution [1].

Stable molecule trapped with deep ultraviolet light for the first time

Researchers from the Department of Molecular Physics at the Fritz Haber Institute have demonstrated the first magneto-optical trap of a stable “closed-shell” molecule: aluminum monofluoride (AlF). They were able to cool AlF with lasers and selectively trap it in three different rotational quantum levels—breaking new ground in ultracold physics.

Their experiments open the door to advanced precision spectroscopy and quantum simulation with AlF. The work has been accepted for publication in Physical Review Letters and is currently available on the arXiv preprint server.

Cooling matter to temperatures near absolute zero (0 K, −273.15°C) acts like a microscope for quantum mechanical behavior, bringing physics that is normally blurred out into sharp focus. Classic historical examples include the 1911 discovery of superconductivity in mercury metal cooled near 4 K, and anomalous thermal behavior in due to its “ortho” and “para” spin states. These phenomena confounded classical physics theories of the time, driving both the evolution of quantum mechanics, as well as efforts to reach ever lower temperatures.

Turning the faint quantum ‘glow’ of empty space into a measurable flash

Researchers from Stockholm University and the Indian Institute of Science Education and Research (IISER) Mohali have reported a practical way to spot one of physics’ strangest predictions: the Unruh effect, which says that an object speeding up (accelerating) would perceive empty space as faintly warm. But, trying to heat something up by accelerating it unimaginably fast is a nonstarter in the lab. The team has shown how to convert that tiny effect into a clear, timestamped flash of light.

Here’s the simple picture. Imagine a group of atoms between two parallel mirrors. The mirrors can either speed up or slow down light emission from the atoms. When these atoms cooperate, they can emit together like a choir—much louder than solo singers. This collective outburst is called superradiance.

The new study explains how the acceleration-induced warmth of empty space, if experienced by the atoms, quietly nudges them so that the choir’s burst happens earlier than it would for atoms sitting still. That earlier-than-expected flash becomes a clean, easy-to-spot signature of the Unruh effect. The work, co-authored with Kinjalk Lochan and Sandeep K. Goyal of IISER Mohali, is now published in Physical Review Letters.

New quantum sensing method measures three light properties at once with high precision

A new method for measuring three different properties of light, at the same time, has been developed using an interferometry-based quantum sensing scheme capable of simultaneously estimating multiple parameters of an optical network.

The approach could help advances in the fields of medicine and astronomy, for example, to improve the precision and scope of quantum measurements across applications ranging from biological imaging to gravitational wave detection.

To date, it has only been possible to measure each parameter individually. However, research published in The European Physical Journal Plus has demonstrated, for the first time, that three independent optical parameters can be measured in a single “view” with ultimate quantum precision, without the need to examine each one of them individually.

Quantum Route Redirect PhaaS targets Microsoft 365 users worldwide

A new phishing automation platform named Quantum Route Redirect is using around 1,000 domains to steal Microsoft 365 users’ credentials.

The kit comes pre-configured with phishing domains to allow less skilled threat actors to achieve maximum results with the least effort.

Since August, analysts at security awareness company KnowBe4 have noticed Quantum Route Redirect (QRR) attacks in the wild across a wide geography, although nearly three-quarters are located in the U.S.

Nobel winner, HPE and chip industry firms team up to make a practical quantum supercomputer

John M. Martinis, one of this year’s winners of the Nobel Prize in physics for breakthroughs in quantum computing, on Monday formed an alliance with HPE and several chip firms to create a practical, mass-producible quantum supercomputer.

Cybersecurity 2026: 6 Forecasts and a Blueprint for the Year Ahead

Thanks and stat safe! Chuck Brooks.

#cybersecurity #predictions2026 #AI #quantum #business #security


As we look toward 2026, the cybersecurity landscape is entering a pivotal phase of newfound technologies, evolving risks & threat actors, and shifting global dynamics.

2026 Technology and Cybersecurity Predictions

Please see attached a list of predictions for where technology and cybersecurity may transcend in 2026. Thanks for reading and sharing! Chuck Brooks.

Note AI enabled but derived entirely from a wide variety of my own published writings interviews, podcasts, and my book “Inside Cyber”

#2026predictions #tech #artificialintelligence #cybersecurity #quantum | on LinkedIn.

Physicists Discover Bizarre “Quantum Pinball” State of Matter

Physicists have discovered how to make electrons “freeze” and “melt” into bizarre quantum patterns, forming a new kind of matter where solid and liquid coexist. Electricity drives nearly every aspect of modern life, from powering vehicles and smartphones to running computers and countless other d

Quantum entanglement distribution via uplink satellite channels

Significant work has been done to develop quantum satellites, which generate entangled pairs in space and distribute them to ground stations separated some distance away. The reverse “ uplink’’ case, where pairs are generated on the ground and swapped on the satellite using an optical Bell measurement, has not been seriously considered due to a prevailing assumption that it is practically infeasible. In this paper, we illustrate the feasibility of performing Discrete Variable photonic Bell measurements in space by conducting a detailed numerical analysis to estimate the channel efficiency and attainable pair fidelity for various satellite-station configurations. Our model accounts for a wide range of physical effects such as atmospheric effects, stray photons, and mode mismatch.

/* */