Menu

Blog

Archive for the ‘quantum physics’ category: Page 29

Sep 24, 2024

Team studies the emergence of fluctuating hydrodynamics in chaotic quantum systems

Posted by in categories: particle physics, quantum physics

Researchers at Ludwig-Maximilians-Universität, Max-Planck-Institut für Quantenoptik, Munich Center for Quantum Science and Technology (MCQST) and the University of Massachusetts recently carried out a study investigating the equilibrium fluctuations in large quantum systems. Their paper, published in Nature Physics, outlines the results of large-scale quantum simulations performed using a quantum gas microscope, an experimental tool used to image and manipulate individual atoms in ultracold atomic gases.

Sep 24, 2024

1st-ever Observation of ‘Spooky Action’ Between Quarks is Highest-Energy Quantum Entanglement Ever Detected

Posted by in categories: particle physics, quantum physics

The discovery of two entangled quarks at the large Hadron Collider is the highest-energy observation of entanglement ever made.

Sep 24, 2024

Stephen Hawking’s black hole radiation paradox could finally be solved — if black holes aren’t what they seem

Posted by in categories: cosmology, quantum physics, singularity

New research suggests that black holes may actually be “frozen stars,” bizarre quantum objects that lack a singularity and an event horizon, potentially solving some of the biggest paradoxes in black hole physics.

Sep 24, 2024

Phase transition in magic with random quantum circuits

Posted by in categories: computing, quantum physics

In quantum computing, “magic” refers to a special quality of quantum states that is essential for enabling powerful, fault-tolerant quantum computations.


Coherent noise affecting a random error correcting code is now shown to produce aion between phases that accumulate and destroy magic.

Sep 24, 2024

Physicists use quantum correlations of photon pairs to hide images from standard cameras

Posted by in categories: electronics, quantum physics

What if you could hide an image in plain sight—so well that even the most advanced cameras couldn’t detect it? Imagine encoding visual information using the properties of quantum optics, rendering it invisible to normal imaging technology.

Sep 24, 2024

Quantum Entanglement Observed in High-Energy Particles

Posted by in categories: particle physics, quantum physics

Have you ever wondered how the bizarre world of quantum mechanics intersects with high-energy particle physics?


Discover how quantum entanglement was observed in high-energy particles at CERN’s LHC, revolutionizing our understanding of particle physics.

Sep 23, 2024

Ephos raises $8.5M to transform quantum computing and AI with its glass-based quantum photonic chips

Posted by in categories: quantum physics, robotics/AI

A Milan-based deep tech startup, Ephos, raised $8.5M in a seed round led by Starlight Ventures to accelerate the development of its glass-based quantum photonic chips. The company aims to transform not just quantum computing and AI but also the broader computational infrastructure of the future.

Other participants included Collaborative Fund, Exor Ventures, 2100 Ventures, and Unruly Capital. The round also attracted angel investors such as Joe Zadeh, former Vice President at Airbnb; Diego Piacentini, former Senior Vice President at Amazon; and Simone Severini, General Manager of Quantum Technologies at Amazon Web Services.

In addition to private investment, Ephos received funding from the European Innovation Council (EIC) and €450,000 in non-dilutive financing from NATO’s Defence Innovation Accelerator (DIANA).

Sep 23, 2024

Thermodynamics of frozen stars

Posted by in categories: cosmology, information science, quantum physics

New study suggests that black holes may not be the featureless, structureless entities that Einstein’s general theory of relativity predicts them to be.


The frozen star is a recent proposal for a nonsingular solution of Einstein’s equations that describes an ultracompact object which closely resembles a black hole from an external perspective. The frozen star is also meant to be an alternative, classical description of an earlier proposal, the highly quantum polymer model. Here, we show that the thermodynamic properties of frozen stars closely resemble those of black holes: frozen stars radiate thermally, with a temperature and an entropy that are perturbatively close to those of black holes of the same mass. Their entropy is calculated using the Euclidean-action method of Gibbons and Hawking. We then discuss their dynamical formation by estimating the probability for a collapsing shell of “normal’’ matter to transition, quantum mechanically, into a frozen star.

Sep 23, 2024

Disorder Induces Delocalization

Posted by in categories: particle physics, quantum physics

A Bose-Einstein condensate of cold atoms occupying a periodic lattice can flow like a superfluid. But if the atoms’ mutual repulsion is strengthened and the lattice potential deepened, the atoms can become immobilized in a state known as a Mott insulator. Now Hepeng Yao of the University of Geneva and his collaborators have examined the Mott transition of cold atoms trapped in a lattice that is quasiperiodic rather than periodic [1]. Given that quasiperiodicity and other kinds of disorder tend to trap particles, the researchers were surprised to discover that their quasiperiodic lattice sustained the superfluid state rather than weakening it.

Yao and his collaborators trapped potassium-39 atoms in a one-dimensional optical lattice formed by the standing waves of two lasers. If the ratio of the lasers’ wavelengths was a rational number, the lattice was periodic. Otherwise, the lattice was quasiperiodic. By adjusting various experimental parameters, they could control the depth of the confining potentials, the strength of the interatomic repulsion, and whether the lattice sites were fully occupied. To determine whether a given set of parameters yielded a static, insulating state or a mobile, superfluid one, they turned off the trap and observed how the atoms flew apart.

The team found that the Mott transitions for the periodic and quasiperiodic lattices were both characterized by a critical value of the interparticle repulsion, but the critical value in the quasiperiodic case was higher. Quantum Monte Carlo simulations pointed to the reason. The commensurability between the lattice period and the particle number is a key factor in pinning particles in a Mott insulator. However, the quasiperiodic lattice blurs this commensurate period, thereby destabilizing the Mott phase to the profit of the superfluid one.

Sep 22, 2024

Even the heaviest particles experience the usual quantum weirdness, new experiment shows

Posted by in categories: particle physics, quantum physics

One of the most surprising predictions of physics is entanglement, a phenomenon where objects can be some distance apart but still linked together. The best-known examples of entanglement involve tiny chunks of light (photons), and low energies.

Page 29 of 835First2627282930313233Last