Menu

Blog

Archive for the ‘quantum physics’ category: Page 26

Oct 2, 2024

Holographic Dark Energy: A New Model for Understanding the Universe’s Expansion

Posted by in categories: cosmology, holograms, quantum physics

Following the accelerated expansion discovery of the Universe, scientists introduced dark energy concepts, which faced issues like the cosmological constant problem.

Researchers at IKBFU developed a holographic dark energy model based on quantum gravity, which views the Universe as a hologram. This model, initially unstable, was refined to treat dark energy as perturbations, stabilizing it. It is now being tested against observational data for accuracy.

Discovery of Accelerated Universe Expansion.

Oct 2, 2024

Microtubules and Consciousness: Exploring Energy Transfer and Quantum Theories

Posted by in categories: biological, neuroscience, quantum physics

Send us a text.

Put simply, the brain is not too warm or wet for consciousness to exist as a wave that connects with the universe.

For decades, Penrose has been working with anesthesiologist Stuart Hameroff on a theory of consciousness called Orchestrated Objective Reduction (Orch OR). Penrose primarily handles the physics of Orch OR, whereas Hameroff handles the biology. Their theory addressed serious gaps in established scientific frameworks spanning physics, neuroscience and psychology. All, some or none of the hypotheses in this theory might prove out experimentally. See the paper below as a step towards proof.

Oct 2, 2024

Quantum Entanglement between Optical and Microwave Photonic Qubits

Posted by in categories: computing, quantum physics

Entanglement is the essential resource that enables quantum information and processing tasks. Historically, sources of entangled light were developed as experimental tools to test the foundations of quantum mechanics. In this study, we make an extreme version of such a source, where the entangled photons are separated in energy by 5 orders of magnitude, to engineer a quantum interconnect between light and superconducting microwave devices.

Our entanglement source is an integrated chip-scale device with a specially designed acoustic transducer, whose vibrations can simultaneously modulate the frequency of an optical cavity and generate an oscillating voltage in a superconducting electrical resonator. We operate this transducer at cryogenic temperatures to maintain the acoustic and electrical components of the device close to their quantum ground state and excite it with laser pulses to generate entangled pairs. We measure statistical correlations between the optical and microwave emission to verify entanglement.

Our work demonstrates a fundamental prerequisite for a quantum information processing architecture in which room-temperature optical communication links may be used to network superconducting quantum-bit processors in distant cryogenic setups.

Oct 2, 2024

Pescando parejas de piones

Posted by in categories: computing, quantum physics

A team of engineers and physicists at quantum computing company Quantinuum has conducted the first-ever teleportation of a logical qubit using fault-tolerant methods. In their paper published in the journal Science, the group describes the setup and teleportation methods they used and the fidelity achieved by each.

Oct 2, 2024

Fluctuations suppress condensation in 1D photon gas

Posted by in category: quantum physics

Decreasing the number of dimensions from three to two to one dramatically influences the physical behaviour of a system, causing different states of matter to emerge. In recent years, physicists have been using optical quantum gases to study this phenomenon.

In the new study, conducted in the framework of the collaborative research centre OSCAR, a team led by Frank Vewinger of the Institute of Applied Physics (IAP) at the University of Bonn looked at how the behaviour of a photon gas changed as it went from being 2D to 1D. The researchers prepared the 2D gas in an optical microcavity, which is a structure in which light is reflected back and forth between two mirrors. The cavity was filled with dye molecules. As the photons repeatedly interact with the dye, they cool down and the gas eventually condenses into an extended quantum state called a Bose–Einstein condensate.

Oct 1, 2024

Researchers exploit quantum entanglement to create hidden images

Posted by in category: quantum physics

Encoding an image into the quantum correlations of photon pairs makes it invisible to conventional imaging techniques.

Oct 1, 2024

History of quantum computing: 12 key moments that shaped the future of computers

Posted by in categories: computing, quantum physics

Although quantum computing is a nascent field, there are plenty of key moments that defined it over the last few decades as scientists strive to create machines that can solve impossible problems.

Sep 30, 2024

Universal rotation gauge via quantum anomalous Hall effect

Posted by in category: quantum physics

Integer quantum Hall effect allows to gauge the resistance standard up to more than one part in a billion. Combining it with the speed of light, one obtains the.

Sep 30, 2024

DOOM can now run on a quantum computer with Quandoom port — seminal FPS blood and gore mixed with spooky action

Posted by in categories: biotech/medical, computing, quantum physics

DOOM has been ported to quantum computers, marking another milestone for this seminal 3D gaming title. However, the coder behind this feat admits that there is currently no quantum computer capable of executing (playing) this code right now. All is not lost, though, as Quandoom can run on a classical computer, even a modest laptop, using a lightweight QASM simulator.

Barcelona ICFO-based Quantum Information PhD student Luke Mortimer, AKA Lumorti, is behind this newest port of DOOM. In the ReadMe file accompanying the Quandoom 1.0.0 release, Lumorti quips that “It is a well-known fact that all useful computational devices ever created are capable of running DOOM,” and humorously suggests that Quandoom may be the first practical use found for quantum computers.

Sep 30, 2024

“Can computers become conscious?”: My reply to Roger Penrose

Posted by in categories: computing, quantum physics

A few weeks ago, I attended the Seven Pines Symposium on Fundamental Problems in Physics outside Minneapolis, where I had the honor of participating in a panel discussion with Sir Roger Penrose. The way it worked was, Penrose spoke for a half hour about his ideas about conscious ness (Gödel, quantum gravity, microtubules, uncomputability, you know the drill), then I delivered a half-hour “response,” and then there was an hour of questions and discussion from the floor. Below, I’m sharing the prepared notes for my talk, as well as some very brief recollections about the discussion afterward. (Sorry, there’s no audio or video.) I unfortunately don’t have the text or transparencies for Penrose’s talk available to me, but—with one exception, which I touch on in my own talk—his talk very much followed the outlines of his famous books, The Emperor’s New Mind and Shadows of the Mind.

Admittedly, for regular readers of this blog, not much in my own talk will be new either. Apart from a few new wisecracks, almost all of the material (including the replies to Penrose) is contained in The Ghost in the Quantum Turing Machine, Could A Quantum Computer Have Subjective Experience? (my talk at IBM T. J. Watson), and Quantum Computing Since Democritus chapters 4 and 11. See also my recent answer on Quora to “What’s your take on John Searle’s Chinese room argument”?

Continue reading “‘Can computers become conscious?’: My reply to Roger Penrose” »

Page 26 of 835First2324252627282930Last