Menu

Blog

Archive for the ‘quantum physics’ category: Page 24

Oct 5, 2024

Direct measurement of a subtle current phase relation shows potential for more stable superconducting qubits

Posted by in categories: computing, quantum physics

In recent years, quantum physicists and engineers have made significant strides toward the development of highly performing quantum computing systems. Realizing a quantum advantage over classical computing systems and enabling the stable operation of quantum devices, however, will require the development of new building blocks for these devices and other aspects underlying their correct functioning.

Oct 5, 2024

Quantum communication: Using microwaves to efficiently control diamond qubits

Posted by in categories: computing, quantum physics

In a first for Germany, researchers at the Karlsruhe Institute of Technology (KIT) have shown how tin vacancies in diamonds can be precisely controlled using microwaves. These vacancies have special optical and magnetic properties and can be used as qubits, the smallest computational units for quantum computing and quantum communication. The results are an important step for the development of high-performance quantum computers and secure quantum communications networks.

Oct 5, 2024

Chinese Scientists Unveil the World’s Most Powerful Sound Laser

Posted by in categories: biotech/medical, computing, quantum physics

Recent advancements in phonon laser technology, which utilizes sound waves rather than light, show promising new applications in medical imaging and deep-sea exploration.

A novel technique enhances these lasers by stabilizing and strengthening the sound waves, allowing for more precise and powerful outputs. This development not only improves existing uses in medical and underwater applications but also extends potential uses to material science and quantum computing.

Enhancing Phonon Laser Technology

Oct 5, 2024

Revolutionizing Data Storage: Quantum Defects Unlock Ultra-High-Density Optical Memory

Posted by in categories: computing, quantum physics

Researchers have developed a promising new optical memory technology using rare earth elements and quantum defects to enable denser and more efficient data storage.

This innovative approach utilizes wavelength multiplexing to increase bit density beyond traditional methods like CDs and DVDs, with theoretical models supporting the potential of near-field energy transfer for long-lasting data retention.

Introduction to Optical Memory Evolution.

Oct 4, 2024

AI can reduce a 100,000-equation quantum problem to just 4 equations

Posted by in categories: information science, quantum physics, robotics/AI

The Hubbard model is a studied model in condensed matter theory and a formidable quantum problem. A team of physicists used deep learning to condense this problem, which previously required 100,000 equations, into just four equations without sacrificing accuracy. The study, titled “Deep Learning the Functional Renormalization Group,” was published on September 21 in Physical Review Letters.

Dominique Di Sante is the lead author of this study. Since 2021, he holds the position of Assistant Professor (tenure track) at the Department of Physics and Astronomy, University of Bologna. At the same time, he is a Visiting Professor at the Center for Computational Quantum Physics (CCQ) at the Flatiron Institute, New York, as part of a Marie Sklodowska-Curie Actions (MSCA) grant that encourages, among other things, the mobility of researchers.

He and colleagues at the Flatiron Institute and other international researchers conducted the study, which has the potential to revolutionize the way scientists study systems containing many interacting electrons. In addition, if they can adapt the method to other problems, the approach could help design materials with desirable properties, such as superconductivity, or contribute to clean energy production.

Oct 4, 2024

Space Emerging from Quantum Mechanics

Posted by in categories: particle physics, quantum physics

Planck length and Planck time and quantum foam.

Space Emerging from Quantum.


The other day I was amused to find a quote from Einstein, in 1936, about how hard it would be to quantize gravity: “like an attempt to breathe in empty space.” Eight decades later, I think we can still agree that it’s hard.

Continue reading “Space Emerging from Quantum Mechanics” »

Oct 4, 2024

Researchers Summon AI-powered Maxwell’s Demon to Find Strategies to Optimize Quantum Devices

Posted by in categories: quantum physics, robotics/AI

Artificially intelligent Maxwell’s demon for optimal control of open…


A team of researchers used reinforcement learning (RL) to optimize feedback control strategies in quantum systems.

Oct 4, 2024

These physicists say they know what’s inside a black hole

Posted by in categories: cosmology, open access, quantum physics

I have my own introduction quantum mechanics course that you can check out on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Physicists are obsessed with black holes, but we still don’t know what’s going on inside of them. One idea is that black holes do not truly exist, but instead they are big quantum objects that have been called fuzzballs or frozen stars. This idea has a big problem. Let’s take a look.

Continue reading “These physicists say they know what’s inside a black hole” »

Oct 4, 2024

Quantum reference frames from top-down crossed products

Posted by in category: quantum physics

All physical observations are made relative to a reference frame, which is a system in its own right. If the system of interest admits a group symmetry, the reference frame observing it must transform commensurately under the group to ensure the covariance of the combined system. We point out that the crossed product is a way to realize quantum reference frames from the bottom-up; adjoining a quantum reference frame and imposing constraints generates a crossed product algebra. We provide a top-down specification of crossed product algebras and show that one cannot obtain inequivalent quantum reference frames using this approach. As a remedy, we define an abstract algebra associated to the system and symmetry group built out of relational crossed product algebras associated with different choices of quantum reference frames.

Oct 4, 2024

Decoherence by warm horizons

Posted by in categories: mapping, particle physics, quantum physics

Recently Danielson, Satishchandran, and Wald (DSW) have shown that quantum superpositions held outside of Killing horizons will decohere at a steady rate. This occurs because of the inevitable radiation of soft photons (gravitons), which imprint a electromagnetic (gravitational) “which-path’’ memory onto the horizon. Rather than appealing to this global description, an experimenter ought to also have a local description for the cause of decoherence. One might intuitively guess that this is just the bombardment of Hawking/Unruh radiation on the system, however simple calculations challenge this idea—the same superposition held in a finite temperature inertial laboratory does not decohere at the DSW rate. In this work we provide a local description of the decoherence by mapping the DSW setup onto a worldline-localized model resembling an Unruh-DeWitt particle detector.

Page 24 of 835First2122232425262728Last