Menu

Blog

Archive for the ‘quantum physics’ category: Page 2

Dec 23, 2024

Black holes may not exist as we know them, but fuzzballs might

Posted by in categories: cosmology, particle physics, quantum physics, singularity

String theory proposes that all particles and forces are made of tiny, vibrating strings, which form the fundamental building blocks of the universe. This framework offers a potential solution to the long-standing paradoxes surrounding black holes, such as their singularities—infinitely tiny points where the laws of physics break down—and the Hawking radiation paradox, which questions the fate of information falling into black holes.

Fuzzballs replace the singularity with an ultra-compressed sphere of strings, likened to a neutron star’s structure but composed of subatomic strings instead of particles. While the theory remains incomplete, its implications are significant, offering an alternative explanation for phenomena previously attributed to black holes.

To differentiate between black holes and fuzzballs, researchers are turning to gravitational waves—ripples in spacetime caused by cosmic collisions. When black holes merge, they emit specific gravitational wave signatures that have so far aligned perfectly with Einstein’s general relativity. However, fuzzballs might produce subtle deviations from these patterns, providing a way to confirm their existence.

Dec 22, 2024

Quantum Mechanical Mass mechanism ~ Why Mass increases

Posted by in categories: energy, quantum physics

It is important to have a mechanism that forms Mass, because if we had a concept of how Mass is formed it would give us a deeper understanding of gravity and help us unity Relativity and Quantum Mechanics.

In this theory Mass increases with speed, because Photon ∆E=hf energy is continuously transforming potential energy into the kinetic energy of matter in the form of electrons.

Continue reading “Quantum Mechanical Mass mechanism ~ Why Mass increases” »

Dec 22, 2024

The theory of quantum politics

Posted by in categories: quantum physics, space

As the multi-polar world of global politics becomes ever more complex, who better to cast light on its workings than a physicist turned President? Join Armen Sarkissian, former President of Armenia, as he argues for his new theory of quantum politics, in which individuals are necessarily connected across space and our world is dominated by randomness, uncertainty, and possibility.

Dec 22, 2024

Engineers enable quantum communication over existing fiber optic cables — new research shows data transmission using quantum teleportation is possible in parallel with a classical network at specific wavelengths

Posted by in category: quantum physics

And it does not violate the laws of physics.

Dec 22, 2024

Can Entangled Particles Communicate Faster than Light?

Posted by in categories: information science, mathematics, particle physics, quantum physics

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface, entanglement allows particles to communicate over vast distances instantly, apparently violating the speed of light. But while entangled particles are connected, they don’t necessarily share information between them.

In quantum mechanics, a particle isn’t really a particle. Instead of being a hard, solid, precise point, a particle is really a cloud of fuzzy probabilities, with those probabilities describing where we might find the particle when we go to actually look for it. But until we actually perform a measurement, we can’t exactly know everything we’d like to know about the particle.

Continue reading “Can Entangled Particles Communicate Faster than Light?” »

Dec 22, 2024

Quantum Information and Quest for Infinities — Vector Spaces

Posted by in categories: mapping, mathematics, quantum physics

The concept of vectors can be traced back to the 17th century with the development of analytic geometry by René Descartes and Pierre de Fermat. They used coordinates to represent points in a plane, which can be seen as a precursor to vectors. In the early 19th century, mathematicians like Bernard Bolzano and August Ferdinand Möbius began to formalize operations on points, lines, and planes, which further developed the idea of vectors.

Hermann Grassmann is considered one of the key figures in the development of vector spaces. In his 1844 work “Die lineale Ausdehnungslehre” (The Theory of Linear Extension), he introduced concepts that are central to vector spaces, such as linear independence, dimension, and scalar products. However, his work was not widely recognized at the time.

In 1888, Giuseppe Peano gave the first modern axiomatic definition of vector spaces. He called them “linear systems” and provided a set of axioms that precisely defined the properties of vector spaces and linear maps. Hilbert helped to further formalize and abstract the concept of vector spaces, placing it within a broader axiomatic framework for mathematics. He played a key role in the development of functional analysis, which studies infinite-dimensional vector spaces.

Dec 21, 2024

Ask Ethan: Do gravitons need to exist?

Posted by in categories: cosmology, evolution, particle physics, quantum physics

Which brings us to the big question: what about gravity?

This is something where we can’t be certain, as gravitation remains the only known force for which we don’t have a full quantum description. Instead, we have Einstein’s general relativity as our theory of gravity, which relies on a purely classical (i.e., non-quantum) formalism for describing it. According to Einstein, spacetime behaves as a four-dimensional fabric, and it’s the curvature and evolution of that fabric that determines how matter-and-energy move through it. Similarly it’s the presence and distribution of matter-and-energy that determine the curvature and evolution of spacetime itself: the two notions are linked together in an inextricable way.

Now, over on the quantum side, our other fundamental forces and interactions have both a quantum description for particles and a quantum description for the fields themselves. All calculations performed within all quantum field theories are calculated within spacetime, and while most of the calculations we perform are undertaken with the assumption that the underlying background of spacetime is flat and uncurved, we can also insert more complex spacetime backgrounds where necessary. It was such a calculation, for example, that led Stephen Hawking to predict the emission of the radiation that bears his name from black holes: Hawking radiation. Combining quantum field theory (in that case, for electromagnetism) with the background of curved spacetime inevitably leads to such a prediction.

Dec 21, 2024

Quantum teleportation can survive through busy internet cables

Posted by in categories: internet, quantum physics

An experiment showing that quantum and classical communication can be carried out through the same fibre at the same time may open the door to building a quantum internet with existing infrastructure.

By Karmela Padavic-Callaghan

Dec 21, 2024

Scientists observe ‘negative time’ in quantum experiments

Posted by in categories: materials, quantum physics

Scientists have long known that light can sometimes appear to exit a material before entering it—an effect dismissed as an illusion caused by how waves are distorted by matter.

Now, researchers at the University of Toronto, through innovative quantum experiments, say they have demonstrated that “negative time” isn’t just a theoretical idea—it exists in a tangible, physical sense, deserving closer scrutiny.

The findings, posted on the preprint server arXiv but not yet published in a peer-reviewed journal, have attracted both global attention and skepticism.

Dec 21, 2024

Researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Posted by in categories: biological, chemistry, computing, quantum physics

Researchers at Rice University have made a meaningful advance in the simulation of molecular electron transfer—a fundamental process underpinning countless physical, chemical and biological processes. The study, published in Science Advances, details the use of a trapped-ion quantum simulator to model electron transfer dynamics with unprecedented tunability, unlocking new opportunities for scientific exploration in fields ranging from molecular electronics to photosynthesis.

Electron transfer, critical to processes such as cellular respiration and energy harvesting in plants, has long posed challenges to scientists due to the complex quantum interactions involved. Current computational techniques often fall short of capturing the full scope of these processes. The multidisciplinary team at Rice, including physicists, chemists and biologists, addressed these challenges by creating a programmable quantum system capable of independently controlling the key factors in : donor-acceptor energy gaps, electronic and vibronic couplings and environmental dissipation.

Using an ion crystal trapped in a vacuum system and manipulated by , the researchers demonstrated the ability to simulate real-time spin dynamics and measure transfer rates across a range of conditions. The findings not only validate key theories of quantum mechanics but also pave the way for novel insights into light-harvesting systems and molecular devices.

Page 2 of 85612345678Last