Toggle light / dark theme

How bigger molecules can help quantum charge flow last longer

A team at EPFL and the University of Arizona has discovered that making molecules bigger and more flexible can actually extend the life of quantum charge flow, a finding that could help shape the future of quantum technologies and chemical control. Their study is published in the Proceedings of the National Academy of Sciences.

In the emerging field of attochemistry, scientists use to trigger and steer electron motion inside . This degree of precision could one day let us design chemicals on demand. Attochemistry could also enable real-time control over how break or form, lead to the creation of highly targeted drugs, develop new materials with tailor-made properties, and improve technologies like solar energy harvesting and quantum computing.

But the big roadblock is decoherence: Electrons lose their quantum “sync” within a few femtoseconds (a millionth of a billionth of a second), especially when the molecule is large and floppy. Researchers have tried different methods to sustain coherence—using heavy atoms, freezing temperatures etc. Because quantum coherence vanishes at macroscopic scales, most approaches to sustaining coherence operate on the same assumption: larger and more flexible molecules were assumed to lose coherence more rapidly. What if that assumption is wrong?

A 1960s idea inspires researchers to study hitherto inaccessible quantum states

Researchers from the Niels Bohr Institute, University of Copenhagen, have created a novel pathway into the study of the elusive quantum states in superconducting vortices. The existence of these was flaunted in the 1960s, but has remained very difficult to verify directly because those states are squeezed into energy scales smaller than one can typically resolve in experiments.

The result was made possible by a combination of ingenuity and the expanding research in created in the labs at the Niels Bohr Institute. It is now published in Physical Review Letters.

Gravitational Waves and Higgs field from Alena Tensor

Alena Tensor is a recently discovered class of energy-momentum tensors that proposes a general equivalence of the curved path and geodesic for analyzed spacetimes which allows the analysis of physical systems in curvilinear, classical and quantum descriptions. In this paper it is shown that Alena Tensor is related to the Killing tensor K and describes the class of GR solutions G + Λ g = 2 Λ K. In this picture, it is not matter that imposes curvature, but rather the geometric symmetries, encoded in the Killing tensor, determine the way spacetime curves and how matter can be distributed in it. It was also shown, that Alena Tensor gives decomposition of energy-momentum tensor of the electromagnetic field using two null-vectors and in natural way forces the Higgs field to appear, indicating the reason for the symmetry breaking.

New quantum battery design promises nanoscale energy storage

In the coming years, batteries so tiny yet powerful could revolutionize everything from smartphones to supercomputers.

Energy storage is about to take a massive leap forward, with the new concept of “topological quantum battery” at the forefront.

A theoretical study by researchers at the RIKEN Center for Quantum Computing and Huazhong University of Science and Technology has shown how to efficiently design a quantum battery.

The Empty Atom Myth: Why “Nothing” Isn’t Empty at All

Go to https://groundnews.com/physics to stay fully informed about physics, other sciences, and more. Subscribe through my link to get 40% off the unlimited vantage plan, the same one I use, which breaks down to just $5/month with my discount.

You can help support this channel via the Physics Explained Patreon account: / physicsexplained.

We’ve all heard the claim: atoms are mostly empty space. That if you zoomed in far enough, you’d find 99.9999999999999% of an atom is just… nothing. But this idea, while popular, is deeply misleading.

In this video, we dive into the quantum reality behind that empty space — and reveal what truly fills the “void” inside atoms. From the discovery of the nucleus to the rise of quantum field theory, we’ll explore how jittering fields, zero-point energy, and vacuum fluctuations reshape our understanding of what “nothing” really is.

Along the way, you’ll learn:

Why Rutherford’s model gave birth to the “empty atom” idea.

Memory matters for quantum atomic motion on metals

In a variety of technological applications related to chemical energy generation and storage, atoms and molecules diffuse and react on metallic surfaces. Being able to simulate and predict this motion is crucial to understanding material degradation, chemical selectivity, and to optimizing the conditions of catalytic reactions. Central to this is a correct description of the constituent parts of atoms: electrons and nuclei.

An electron is incredibly light—its mass is almost 2,000 times smaller than that of even the lightest nucleus. This mass disparity allows to adapt rapidly to changes in nuclear positions, which usually enables researchers to use a simplified “adiabatic” description of atomic motion.

While this can be an excellent approximation, in some cases the electrons are affected by nuclear motion to such an extent that we need to abandon this simplification and account for the coupling between the dynamics of electrons and nuclei, leading to so-called “non-adiabatic effects.”

A semi-automated manufacturing process for cost-efficient quantum cascade laser modules

Resonantly tunable quantum cascade lasers (QCLs) are high-performance laser light sources for a wide range of spectroscopy applications in the mid-infrared (MIR) range. Their high brilliance enables minimal measurement times for more precise and efficient characterization processes and can be used, for example, in chemical and pharmaceutical industries, medicine or security technology. Until now, however, the production of QCL modules has been relatively complex and expensive.

The Fraunhofer Institute for Applied Solid State Physics IAF has therefore developed a semi-automated process that significantly simplifies the production of QCL modules with a MOEMS (micro-opto-electro-mechanical system) grating scanner in an external optical cavity (EC), making it more cost-efficient and attractive for industry. The MOEMS-EC-QCL technology was developed by Fraunhofer IAF in collaboration with the Fraunhofer Institute for Photonic Microsystems IPMS.

Unveiling under-the-barrier electron dynamics in strong field tunneling

Tunneling is a peculiar quantum phenomenon with no classical counterpart. It plays an essential role for strong field phenomena in atoms and molecules interacting with intense lasers. Processes such as high-order harmonic generation are driven by electron dynamics following tunnel ionization.

While this has been widely explored, the behavior of electrons under the tunneling barrier, though equally significant, has remained obscure. The understanding of laser-induced strong field ionization distinguishes two scenarios for a given system and : the multiphoton regime at rather low intensities and tunneling at high intensities.

However, most strong-field experiments have been carried out in an intermediate situation where multiphoton signatures are observed while tunneling is still the dominant process.