Oct 3, 2024
Opinion: Why we must keep investigating physics’ most tantalizing theory —
Posted by Shubham Ghosh Roy in category: physics
Even without experimental results.
Even without experimental results.
Physicists have observed the Zel’dovich effect in an electromagnetic system – something that was thought to be incredibly difficult to do until now. This observation, in a simplified induction generator, suggests that the effect could in fact be quite fundamental in nature.
In 1971, the Russian physicist Yakov Zel’dovich predicted that electromagnetic waves scattered by a rotating metallic cylinder should be amplified by gaining mechanical rotational energy from the cylinder. The effect, explains Marion Cromb of the University of Southampton, works as follows: waves with angular momentum – or twist – that would usually be absorbed by an object, instead become amplified by that object. However, this amplification only occurs if a specific condition is met: namely, that the object is rotating at an angular velocity that’s higher than the frequency of the incoming waves divided by the wave angular momentum number. In this specific electromagnetic experiment, this number was 1, due to spin angular momentum, but it can be larger.
\r \r
As President, Jimmy Carter established several science-related initiatives and policies.
Carter also sought to promote scientific research and development in a number of areas. He increased funding for basic science research in fields such as physics and chemistry, and established the National Commission on Excellence in Education to promote improvements in science and math education in American schools.
Continue reading “Looking back at President Jimmy Carter’s science policy” »
“No one knows how the moon was formed,” said Dr. Darren Williams. “For the last four decades, we have had one possibility for how it got there. Now, we have two. This opens a treasure trove of new questions and opportunities for further study.”
How did the Moon form? Was it from a collision, as has been the longstanding theory, or could it have been captured by the Earth early in our planet’s formation? This is what a recent study published in The Planetary Science Journal hopes to address as two researchers from Penn State investigated a new model for how our Moon came to reside within its present orbit around the Earth. This study holds the potential to help researchers better understand the origin of our Moon, which could help explain how some moons throughout our solar system came to be orbiting their respective planets, as well.
For the study, the researchers performed a series of calculations aimed at ascertaining if a simulated binary object could end up in the Moon’s orbit. The argument the researchers make is that if the Moon was formed from a collision, then it would orbit above the Earth’s equator. In contrast, the Moon’s orbit follows a different orbit.
Continue reading “Revisiting the Moon’s Origin: A New Capture Theory” »
A mysterious phenomenon known as duality often leads to new discoveries in physics. This time, space-time itself can sometimes be two things at once.
An international team of researchers described how loops, crucial for the stability of such networks, occur in transport networks found in nature. The researchers observed that when one branch of the network reaches the system’s boundary, the interactions between the branches change drastically. Previously repelling branches begin to attract each other, leading to the sudden formation of loops.
Lab experiments around the globe that are gearing up to recreate the mysterious phase of matter found in the early universe could also produce the world’s strongest electromagnetic fields, according to a theoretical analysis by a RIKEN physicist and two colleagues. This unanticipated bonus could enable physicists to investigate entirely new phenomena.
Researchers have developed a groundbreaking system that uses bacteria to mimic the problem-solving capabilities of artificial neural networks.
Cell-based biocomputing is a novel technique that uses cellular processes to perform computations. Such micron-scale biocomputers could overcome many of the energy, cost and technological limitations of conventional microprocessor-based computers, but the technology is still very much in its infancy. One of the key challenges is the creation of cell-based systems that can solve complex computational problems.
Now a research team from the Saha Institute of Nuclear Physics in India has used genetically modified bacteria to create a cell-based biocomputer with problem-solving capabilities. The researchers created 14 engineered bacterial cells, each of which functioned as a modular and configurable system. They demonstrated that by mixing and matching appropriate modules, the resulting multicellular system could solve nine yes/no computational decision problems and one optimization problem.
Continue reading “Genetically engineered bacteria solve computational problems” »
What I believe is that symmetry follows everything even mathematics but what explains it is the Fibonacci equation because it seems to show the grand design of everything much like physics has I believe the final parameter of the quantified parameter of infinity.
Recent explorations of unique geometric worlds reveal perplexing patterns, including the Fibonacci sequence and the golden ratio.
Orbital angular momentum monopoles have been the subject of great theoretical interest as they offer major practical advantages for the emerging field of orbitronics, a potential energy-efficient alternative to traditional electronics. Now, through a combination of robust theory and experiments at the Swiss Light Source SLS at Paul Scherrer Institute PSI, their existence has been demonstrated. The discovery is published in the journal Nature Physics.