Toggle light / dark theme

To produce light, lasers typically rely on optical cavities, pairs of mirrors facing each other that amplify light by bouncing it back and forth. Recently, some physicists have been investigating the generation of “laser light” in open air without the use of optical cavities, a phenomenon known as cavity-free lasing in atmospheric air.

IOP Publishing has retracted a total of 350 papers from two different 2021 conference proceedings because an “investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.”

The case is just the latest involving the discovery of papers full of gibberish – aka “tortured phrases” – thanks to the work of Guillaume Cabanac, a computer scientist at the University of Toulouse, Cyril Labbé, of University Grenoble-Alpes and Alexander Magazinov, of Skoltech, in Moscow. The tool detects papers that contain phrases that appear to have been translated from English into another language, and then back into English, likely with the involvement of paper-generating software.

The papers were in the Journal of Physics: Conference Series (232 articles), and IOP Conference Series: Materials Science and Engineering (118 articles), plus four editorials.

Sometimes leaving well-enough alone is the best policy. Ask Teja Santosh Dandibhotla.

Upset that a paper of his had been retracted from the Journal of Physics: Conference Series, Santosh, a computer scientist at the CVR College of Engineering in Hyderabad, India, contacted us to plead his case. (We of course do not make decisions about retractions, we reminded him.)

Santosh’s article, “Intelligent defaulter Prediction using Data Science Process,” had been pulled along with some 350 other papers in two conference proceedings because IOP Publishing had “uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.”

Modern astrophysics has enabled scientists to observe the universe with unprecedented clarity, from exoplanets to entire galaxies.

Despite our galaxy blocking some views, advanced tools like the James Webb Space Telescope and upcoming projects such as the Square Kilometre Array are pushing the boundaries of our cosmic understanding. Visualization techniques help researchers explore the universe in both space and time, revealing phenomena like fast radio bursts. Looking ahead, scientists hope to capture images of distant exoplanets and unravel mysteries such as dark energy and the expansion of the universe.

Observing the universe: from exoplanets to galaxies.

In this episode of Cosmology 101, we dive into the concept of an expanding universe. From the first moments of the Big Bang, our cosmos has been stretching in every direction. We explore what this expansion means for us, how we know it’s happening, and the fascinating implications of living in an ever-growing universe.

Join Katie Mack, Perimeter Institute’s Hawking Chair in Cosmology and Science Communication, on an incredible journey through the cosmos in our new series, Cosmology 101.

Sign up for our newsletter and download exclusive cosmology posters at: https://landing.perimeterinstitute.ca

Follow the edge of theoretical physics on our social media:
/ pioutreach.
https://twitter.com/perimeter.
/ perimeterinstitute.
/ perimeter-institute.

Follow our host \.

Follow Closer To Truth on Instagram for interesting articles, announcements, and giveaways: https://shorturl.at/p2IhM

Can biology be explained entirely in terms of chemistry and then physics? If so, that’s “reductionism.” Or are there “emergent” properties at higher levels of the hierarchy of life that cannot be explained by properties at lower or more basic levels?

Watch more videos on the philosophy of biology: https://shorturl.at/0D92A

Michael Ruse is the Lucyle T. Wekmeister Professor and Director of the History and Philosophy of Science Program at Florida State University.

Get exclusive member benefits with a free Closer To Truth account: https://closertotruth.com/

Closer To Truth, hosted by Robert Lawrence Kuhn and directed by Peter Getzels, presents the world’s greatest thinkers exploring humanity’s deepest questions. Discover fundamental issues of existence. Engage new and diverse ways of thinking. Appreciate intense debates. Share your own opinions. Seek your own answers.

Cosmic surveys suggest the force pulling the universe apart might not be constant after all.

By Rebecca Boyle

Imagine sitting in the center of a firework that has just exploded. After the first flash of light and heat, sparks fly off in all directions, with some streaming together into fiery filaments and others fading quickly into cold, ashy oblivion. After a moment more, the smoke is all that remains—the echo, if you will, of the firework’s big bang.

Every clear night for the last three weeks, Bob Stephens has pointed his home telescope at the same two stars in hopes of witnessing one of the most violent events in the universe—a nova explosion a hundred thousand times brighter than the sun.

The eruption, which scientists say could happen any day now, has excited the interest of major observatories worldwide, and it promises to advance our understanding of turbulent binary star systems.

Yet for all the high-tech observational power that NASA and other scientific institutions can muster, astrophysicists are relying on countless amateur astronomers like Stephens to spot the explosion first.