Menu

Blog

Archive for the ‘physics’ category: Page 317

Jul 27, 2012

Real Scientist Working in the Field of Propulsion Physics

Posted by in categories: physics, space

While emailing back and forth with Ron Kita, I realized that it would be useful to compile a list of researchers who have published serious papers, past & present, in the new field of propulsion physics (gravity modification is an example) at least for the purpose of finding out how many countries are at some stage in this field.

This is important to do if we are to hasten the theoretical & technological development to leave Earth on a commercially feasible scale. I was surprised by what I found.

Below is the list. I’m sure it is not complete but it is a start. If you know of anyone who should be on this list, please let me know, and I will update this post.

Here are the ground rules for including a name.

Continue reading “Real Scientist Working in the Field of Propulsion Physics” »

May 14, 2012

Consideration for Sub-Millisecond Pulsars (or the Lack Thereof)

Posted by in categories: existential risks, particle physics, physics, space

On a casual read of the appraised work of Duncan R. Lorimer on Binary and Millisecond Pulsars (2005) last week, I noted the reference to the lack of pulsars with P < 1.5 ms. It cites a mere suggestion that this is due to gravitational wave emission from R-mode instabilities, but one has not offered a solid reason for such absence from our Universe. As the surface magnetic field strength of such would be lower (B ∝ (P ˙P )^(1÷2)) than other pulsars, one could equally suggest that the lack of sub millisecond pulsars is due to their weaker magnetic fields allowing CR impacts resulting in stable MBH capture… Therefore if one could interpret that the 108 G field strength adopted by G&M is an approximate cut-off point where MBH are likely to be captured by neutron stars, then one would perhaps have some phenomenological evidence that MBH capture results in the destruction of neutron stars into black holes. One should note that more typical values of observed neutron stars calculate a 1012 G field, so that is a 104 difference from the borderline-existence cases used in the G&M analysis (and so much less likely to capture). That is not to say that MBH would equate to a certain danger for capture in a planet such as Earth where the density of matter is much lower — and accretion rates much more likely to be lower than radiation rates — an understanding that is backed up by the ‘safety assurance’ in observational evidence of white dwarf longevity. However, it does take us back to question — regardless of the frequently mentioned theorem here on Lifeboat that states Hawking Radiation should be impossible — Hawking Radiation as an unobserved theoretical phenomenon may not be anywhere near as effective as derived in theoretical analysis regardless of this. This oft mentioned concern of ‘what if Hawking is wrong’ of course is endorsed by a detailed G&M analysis which set about proving safety in the scenario that Hawking Radiation was ineffective at evaporating such phenomenon. Though doubts about the neutron star safety assurance immediately makes one question how reliable are the safety assurances of white dwarf longevity – and my belief has been that the white dwarf safety assurance seems highly rational (as derived in a few short pages in the G&M paper and not particularly challenged except for the hypothesis that they may have over-estimated TeV-scale MBH size which could reduce their likelihood of capture). It is quite difficult to imagine a body as dense as a white dwarf not capturing any such hypothetical stable MBH over their lifetime from CR exposure – which validates the G&M position that accretion rates therein must be vastly outweighed by radiation rates, so the even lower accretion rates on a planet such as Earth would be even less of a concern. However, given the gravity of the analysis, those various assumptions on which it is based perhaps deserves greater scrutiny, underscored by a concern made recently that 20% of the mass/energy in current LHC collisions are unaccounted for. Pulsars are often considered one of the most accurate references in the Universe due to their regularity and predictability. How ironic if those pulsars which are absent from the Universe also provided a significant measurement. Binary and Millisecond Pulsars, D.R. Lorimer: http://arxiv.org/pdf/astro-ph/0511258v1.pdf

Apr 9, 2012

LHC-Critique Press Info: Instead of a neutral risk assessment of the LHC: New records and plans for costly upgrades at CERN

Posted by in categories: complex systems, cosmology, engineering, ethics, existential risks, futurism, media & arts, nuclear energy, particle physics, philosophy, physics, policy, scientific freedom, space, sustainability

High energy experiments like the LHC at the nuclear research centre CERN are extreme energy consumers (needing the power of a nuclear plant). Their construction is extremely costly (presently 7 Billion Euros) and practical benefits are not in sight. The experiments eventually pose existential risks and these risks have not been properly investigated.

It is not the first time that CERN announces record energies and news around April 1 – apparently hoping that some critique and concerns about the risks could be misinterpreted as an April joke. Additionally CERN regularly starts up the LHC at Easter celebrations and just before week ends, when news offices are empty and people prefer to have peaceful days with their friends and families.

CERN has just announced new records in collision energies at the LHC. And instead of conducting a neutral risk assessment, the nuclear research centre plans costly upgrades of its Big Bang machine. Facing an LHC upgrade in 2013 for up to CHF 1 Billion and the perspective of a Mega-LHC in 2022: How long will it take until risk researchers are finally integrated in a neutral safety assessment?

There are countless evidences for the necessity of an external and multidisciplinary safety assessment of the LHC. According to a pre-study in risk research, CERN fits less than a fifth of the criteria for a modern risk assessment (see the press release below). It is not acceptable that the clueless member states point at the operator CERN itself, while this regards its self-set security measures as sufficient, in spite of critique from risk researchers, continuous debates and the publication of further papers pointing at concrete dangers and even existential risks (black holes, strangelets) eventually arising from the experiments sooner or later. Presently science has to admit that the risk is disputed and basically unknown.

Continue reading “LHC-Critique Press Info: Instead of a neutral risk assessment of the LHC: New records and plans for costly upgrades at CERN” »

Feb 13, 2012

LHC-Critique PRESS RELEASE (Feb 13 2012): CERN plans Mega-particle collider. COMMUNICATION to CERN: For a neutral and multi-disciplinary risk assessment before any LHC upgrade

Posted by in categories: cosmology, engineering, ethics, existential risks, futurism, nuclear energy, particle physics, philosophy, physics, scientific freedom, space, sustainability, transparency

- CERN’s annual meeting to fix LHC schedules in Chamonix: Increasing energies. No external and multi-disciplinary risk assessment so far. Future plans targeting at costly LHC upgrade in 2013 and Mega-LHC in 2022.

- COMMUNICATION to CERN – For a neutral and multi-disciplinary risk assessment before any LHC upgrade

According to CERN’s Chamonix workshop (Feb. 6–10 2012) and a press release from today: In 2012 the collision energies of the world’s biggest particle collider LHC should be increased from 3.5 to 4 TeV per beam and the luminosity is planned to be increased by a factor of 3. This means much more particle collisions at higher energies.

CERN plans to shut down the LHC in 2013 for about 20 months to do a very costly upgrade (for CHF 1 Billion?) to run the LHC at double the present energies (7 TeV per beam) afterwards.

Continue reading “LHC-Critique PRESS RELEASE (Feb 13 2012): CERN plans Mega-particle collider. COMMUNICATION to CERN: For a neutral and multi-disciplinary risk assessment before any LHC upgrade” »

Feb 12, 2012

CERN’s annual Chamonix-meeting to fix LHC schedules (Feb. 6–10 2012): Increasing energies. No external and multi-disciplinary risk assessment so far. Future plans targeting at Mega-LHC.

Posted by in categories: cosmology, engineering, ethics, events, existential risks, particle physics, physics, scientific freedom, sustainability, transparency

Info on the outcomes of CERN’s annual meeting in Chamonix this week (Feb. 6–10 2012):

In 2012 LHC collision energies should be increased from 3.5 to 4 TeV per beam and the luminosity is planned to be highly increased. This means much more particle collisions at higher energies.

CERN plans to shut down the LHC in 2013 for about 20 months to do a very costly upgrade (CHF 1 Billion?) to run the LHC at 7 TeV per beam afterwards.

Future plans: A High-Luminosity LHC (HL-LHC) is planned, “tentatively scheduled to start operating around 2022” — with a beam energy increased from 7 to 16.5 TeV(!).

Continue reading “CERN’s annual Chamonix-meeting to fix LHC schedules (Feb. 6-10 2012): Increasing energies. No external and multi-disciplinary risk assessment so far. Future plans targeting at Mega-LHC.” »

Feb 12, 2012

Badly designed to understand the Universe — CERN’s LHC in critical Reflection by great Philosopher H. Maturana and Astrophysicist R. Malina

Posted by in categories: complex systems, cosmology, education, engineering, ethics, existential risks, futurism, media & arts, particle physics, philosophy, physics, scientific freedom, sustainability

Famous Chilean philosopher Humberto Maturana describes “certainty” in science as subjective emotional opinion and astonishes the physicists’ prominence. French astronomer and “Leonardo” publisher Roger Malina hopes that the LHC safety issue would be discussed in a broader social context and not only in the closer scientific framework of CERN.

(Article published in “oekonews”: http://oekonews.at/index.php?mdoc_id=1067777 )

The latest renowned “Ars Electronica Festival” in Linz (Austria) was dedicated in part to an uncritical worship of the gigantic particle accelerator LHC (Large Hadron Collider) at the European Nuclear Research Center CERN located at the Franco-Swiss border. CERN in turn promoted an art prize with the idea to “cooperate closely” with the arts. This time the objections were of a philosophical nature – and they had what it takes.

In a thought provoking presentation Maturana addressed the limits of our knowledge and the intersubjective foundations of what we call “objective” and “reality.” His talk was spiked with excellent remarks and witty asides that contributed much to the accessibility of these fundamental philosophical problems: “Be realistic, be objective!” Maturana pointed out, simply means that we want others to adopt our point of view. The great constructivist and founder of the concept of autopoiesis clearly distinguished his approach from a solipsistic position.

Continue reading “Badly designed to understand the Universe — CERN's LHC in critical Reflection by great Philosopher H. Maturana and Astrophysicist R. Malina” »

Jan 17, 2012

Artifacts in the Solar System

Posted by in categories: philosophy, physics, space

One way that astronomers and astrobiologists search for life in the galaxy is observation of rocky planets orbiting other stars. Such planets may contain an atmosphere, liquid water, and other ingredients that are required for biological life on Earth. Once a number of these potentially inhabited planets have been identified, the next logical step in exploration is to send remote exploratory probes to make direct observations of these planets. Present-day study of other planetary systems is so far limited to remote observation with telescopes, but future plans for exploration include the design and deployment of small robotic exploratory spacecraft toward other star systems.

If intelligent, technological extraterrestrial life exists in the galaxy, then it is conceivable that such a civilization might embark on a similar exploration strategy. Extraterrestrial intelligent (ETI) civilizations may choose to pursue astronomy and search for planets orbiting other star systems and may also choose to follow-up on some of these targets by deploying their own remote exploratory spacecraft. If nearby ETI have observed the Solar System and decided to pursue further exploration, then evidence of ETI technology may be present in the form of such exploratory probes. We refer to this ETI technology as “non-terrestrial artifacts”, in part to distinguish these plausible exploratory spacecraft from the flying saucers of science fiction.

In a recent paper titled “On the likelihood of non-terrestrial artifacts in the Solar System”, published in the journal Acta Astronautica (and available on arXiv.org as a preprint), Jacob Haqq-Misra and Ravi Kopparapu discuss the likelihood that human exploration of the Solar System would have uncovered any non-terrestrial artifacts. Exploratory probes destined for another star system are likely to be relatively small (less than ten meters in diameter), so any non-terrestrial artifacts present in the Solar System have probably remained undetected. The surface and atmosphere of Earth are probably the most comprehensively searched volumes in the Solar System and can probably be considered absent of non-terrestrial artifacts. Likewise, the surface of the moon and portions of Mars have been searched at a sufficient resolution to have uncovered any non-terrestrial artifacts that could have been present. However, the deep oceans of Earth and the subsurface of the Moon are largely unexplored territory, while regions such as the asteroid belt, the Kuiper belt, and stable orbits around other Solar System planets could also contain non-terrestrial artifacts that have so far escaped human observation. Because of this plenitude of nearby unexplored territory, it would be premature to conclude that the Solar System is absent of non-terrestrial artifacts.

Although the chances of finding non-terrestrial artifacts might be low, the discovery of ETI technology, even if broken and non-functioning, would provide evidence that ETI exist elsewhere in the galaxy and have a profound impact on humankind. This is not to suggest that the search for non-terrestrial technology should be given priority over other astronomical missions; however, as human exploration into the Solar System continues, we may as well keep our eyes open for ETI technology, just in case.

Jan 16, 2012

Electro-magnetic Vortex phenomena & Industrial Implications…

Posted by in categories: engineering, existential risks, fun, humor, physics

I wouldn’t have paid much attention to the following topic except for the article appearing in an otherwise credible international news agency (MINA).

http://macedoniaonline.eu/content/view/17115/56/
http://wiki.answers.com/Q/What_is_the_gulf_of_aden_vortex

Whilst electro-magnetic disturbances occur naturally — all the time, the suggestion that one in particular has allegedly arose through industrial practices (ionospheric research, wormhole research(??)) lends to curiosity. If anyone on one of the advisory boards for the various science disciplines has a strong knowledge of electro-magnetic vortex type features that can occur in nature, please explain the phenomena, whether there are any implications of these and whether industry of any sort (in particular directed ionospheric heating) can cause such anomalies to appear from time to time.

I understand that there can be certain fluctuations and weakening in build up to magnetic pole reversals, for example (though please correct me if I’m wrong here). That besides one may enjoy the alleged reaction of certain defense forces (surely spoof) which is at least good satire on how leaders of men can often fear the unknown.

Jan 13, 2012

Verne, Wells, and the Obvious Future Part 2

Posted by in categories: asteroid/comet impacts, biotech/medical, business, defense, economics, education, engineering, ethics, events, evolution, existential risks, futurism, life extension, lifeboat, media & arts, military, nuclear weapons, philosophy, physics, policy, space

I am taking the advice of a reader of this blog and devoting part 2 to examples of old school and modern movies and the visionary science they portray.

Things to Come 1936 — Event Horizon 1997
Things to Come was a disappointment to Wells and Event Horizon was no less a disappointment to audiences. I found them both very interesting as a showcase for some technology and social challenges.… to come- but a little off the mark in regards to the exact technology and explicit social issues. In the final scene of Things to Come, Raymond Massey asks if mankind will choose the stars. What will we choose? I find this moment very powerful- perhaps the example; the most eloguent expression of the whole genre of science fiction. Event Horizon was a complete counterpoint; a horror movie set in space with a starship modeled after a gothic cathedral. Event Horizon had a rescue crew put in stasis for a high G several month journey to Neptune on a fusion powered spaceship. High accelleration and fusion brings H-bombs to mind, and though not portrayed, this propulsion system is in fact a most probable future. Fusion “engines” are old hat in sci-fi despite the near certainty the only places fusion will ever work as advertised are in a bomb or a star. The Event Horizon, haunted and consigned to hell, used a “gravity drive” to achieve star travel by “folding space.” Interestingly, a recent concept for a black hole powered starship is probably the most accurate forecast of the technology that will be used for interstellar travel in the next century. While ripping a hole in the fabric of space time may be strictly science fantasy, for the next thousand years at least, small singularity propulsion using Hawking radiation to achieve a high fraction of the speed of light is mathematically sound and the most obvious future.

https://lifeboat.com/blog/2012/09/only-one-star-drive-can-work-so-far

That is, if humanity avoids an outbreak of engineered pathogens or any one of several other threats to our existence in that time frame.

Continue reading “Verne, Wells, and the Obvious Future Part 2” »

Jan 10, 2012

Verne, Wells, and the Obvious Future Part 1

Posted by in categories: asteroid/comet impacts, business, education, engineering, ethics, events, existential risks, finance, fun, futurism, media & arts, military, nuclear weapons, philosophy, physics, policy, robotics/AI, space, transparency

Steamships, locomotives, electricity; these marvels of the industrial age sparked the imagination of futurists such as Jules Verne. Perhaps no other writer or work inspired so many to reach the stars as did this Frenchman’s famous tale of space travel. Later developments in microbiology, chemistry, and astronomy would inspire H.G. Wells and the notable science fiction authors of the early 20th century.

The submarine, aircraft, the spaceship, time travel, nuclear weapons, and even stealth technology were all predicted in some form by science fiction writers many decades before they were realized. The writers were not simply making up such wonders from fanciful thought or childrens ryhmes. As science advanced in the mid 19th and early 20th century, the probable future developments this new knowledge would bring about were in some cases quite obvious. Though powered flight seems a recent miracle, it was long expected as hydrogen balloons and parachutes had been around for over a century and steam propulsion went through a long gestation before ships and trains were driven by the new engines. Solid rockets were ancient and even multiple stages to increase altitude had been in use by fireworks makers for a very long time before the space age.

Some predictions were seen to come about in ways far removed yet still connected to their fictional counterparts. The U.S. Navy flagged steam driven Nautilus swam the ocean blue under nuclear power not long before rockets took men to the moon. While Verne predicted an electric submarine, his notional Florida space gun never did take three men into space. However there was a Canadian weapons designer named Gerald Bull who met his end while trying to build such a gun for Saddam Hussien. The insane Invisible Man of Wells took the form of invisible aircraft playing a less than human role in the insane game of mutually assured destruction. And a true time machine was found easily enough in the mathematics of Einstein. Simply going fast enough through space will take a human being millions of years into the future. However, traveling back in time is still as much an impossibillity as the anti-gravity Cavorite from the First Men in the Moon. Wells missed on occasion but was not far off with his story of alien invaders defeated by germs- except we are the aliens invading the natural world’s ecosystem with our genetically modified creations and could very well soon meet our end as a result.

While Verne’s Captain Nemo made war on the death merchants of his world with a submarine ram, our own more modern anti-war device was found in the hydrogen bomb. So destructive an agent that no new world war has been possible since nuclear weapons were stockpiled in the second half of the last century. Neither Verne or Wells imagined the destructive power of a single missile submarine able to incinerate all the major cities of earth. The dozens of such superdreadnoughts even now cruising in the icy darkness of the deep ocean proves that truth is more often stranger than fiction. It may seem the golden age of predictive fiction has passed as exceptions to the laws of physics prove impossible despite advertisments to the contrary. Science fiction has given way to science fantasy and the suspension of disbelief possible in the last century has turned to disappointment and the distractions of whimsical technological fairy tales. “Beam me up” was simply a way to cut production costs for special effects and warp drive the only trick that would make a one hour episode work. Unobtainium and wishalloy, handwavium and technobabble- it has watered down what our future could be into childish wish fulfillment and escapism.

Continue reading “Verne, Wells, and the Obvious Future Part 1” »