Researchers have identified a distinctive ultraviolet signature of water in the interstellar comet known as 3I/ATLAS.
The reality is Deamer and the psychedelics-inspired Damer may very well be right about the origin of life on Earth. They may never win over scientists like Nick Lane, an evolutionary biochemist at University College London, who argues life needed the singular mix of physics and chemistry in hydrothermal ocean vents to originate. As recently as 2024, Lane and chemist Joana C. Xavier of Imperial College London explained in Nature that the wet and dry cycles of hot springs, key to Deamer’s and Damer’s hypothesis, could not lead to “the network of hundreds of reactions that keeps all cells alive.”
However, biologist Jack Szostak, a Nobel laureate, whose lab at the University of Chicago focuses on the origin of life, told me it’s likely that life did begin in volcanically active regions or impact craters on Earth’s surface. “Deep sea hydrothermal vents are not a plausible site for the origin of life,” he said. “Geothermally active areas,” he added, “are attractive because they do provide the environmental fluctuations needed to drive the primordial cell cycle.” Synthetic biologist Kate Adamala, from the University of Minnesota, who builds artificial protocells to probe how life might have first taken shape, agreed. “I’m on Team Dave and Bruce,” she said.
Presented with either criticism or praise of his origin-of-life theory, Damer remained as sanguine as ever. “You’re never going to have a complete understanding of the origin of life on the early Earth, because we just can’t reproduce the exact conditions,” he said. Of course, he believed the hot springs hypothesis would stand the test of time.
FROSTI revolutionizes mirror control in gravitational-wave detectors, opening the door to a far deeper view of the cosmos. FROSTI is a new adaptive optics system that precisely corrects distortions in LIGO’s mirrors caused by extreme laser power. By using custom thermal patterns, it preserves mirror shape without introducing noise, allowing detectors to operate at higher sensitivities. This leap enables future observatories like Cosmic Explorer to see deeper into the cosmos. The technology lays the groundwork for vastly expanding gravitational-wave astronomy.
Gravitational-wave detectors may soon get a major performance boost, thanks to a new instrumentation advance led by physicist Jonathan Richardson of the University of California, Riverside. In a paper published in the journal Optica, Richardson and his colleagues describe FROSTI, a full-scale prototype that successfully controls laser wavefronts at extremely high power inside the Laser Interferometer Gravitational-Wave Observatory, or LIGO.
LIGO is an observatory that measures gravitational waves — tiny ripples in spacetime created by massive accelerating objects such as colliding black holes. It was the first facility to directly detect these waves, providing strong support for Einstein’s Theory of Relativity. Using two 4-km-long laser interferometers located in Washington and Louisiana, LIGO senses incredibly small disturbances, giving scientists a new way to study black holes, cosmology, and matter under extreme conditions.
A research team at Duke University has developed a new AI framework that can uncover simple, understandable rules that govern some of the most complex dynamics found in nature and technology.
The AI system works much like how history’s great “dynamicists”—those who study systems that change over time—discovered many laws of physics that govern such systems’ behaviors. Similar to how Newton, the first dynamicist, derived the equations that connect force and movement, the AI takes data about how complex systems evolve over time and generates equations that accurately describe them.
The AI, however, can go even further than human minds, untangling complicated nonlinear systems with hundreds, if not thousands, of variables into simpler rules with fewer dimensions.
When the most massive stars reach the ends of their lives, they blow up in spectacular supernova explosions, which seed the universe with heavy elements such as carbon and iron. Another type of explosion—the kilonova—occurs when a pair of dense dead stars, called neutron stars, smash together, forging even heavier elements such as gold and uranium. Such heavy elements are among the basic building blocks of stars and planets.
So far, only one kilonova has been unambiguously confirmed to date, a historic event known as GW170817, which took place in 2017. In that case, two neutron stars smashed together, sending ripples in space-time, known as gravitational waves, as well as light waves across the cosmos.
The cosmic blast was detected in gravitational waves by the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory (LIGO) and its European partner, the Virgo gravitational-wave detector, and in light waves by dozens of ground-based and space telescopes around the world.
You’ve probably grown up accepting that your thoughts, feelings, and inner awareness all emerge from the firing of neurons in your brain. It’s what science has taught us for decades. Your consciousness is simply what happens when billions of brain cells communicate. Simple enough, right?
What if you’ve been looking at this backwards the whole time? What if the entire universe has been trying to tell you something fundamentally different about the nature of reality itself?
A materials science professor from Uppsala University recently published a framework that proposes an entirely new theory of the origin of the universe. Here’s where things get interesting. This framework presents consciousness not as a byproduct of brain activity, but as a fundamental field underlying everything we experience, including matter, space, time, and life itself.
The study, conducted by Brookhaven theoretical physicist Weiguo Yin and described in a recent paper published in Physical Review B, is the first paper emerging from the “AI Jam Session” earlier this year, a first-of-its-kind event hosted by DOE and held in cooperation with OpenAI to push the limits of general-purpose large language models applied to science research. The event brought together approximately 1,600 scientists across nine host locations within the DOE national laboratory complex. At Brookhaven, more than 120 scientists challenged and evaluated the capabilities of OpenAI’s latest step-based logical reasoning AImodel built for complex problem solving.
Yin’s AI study focused on a class of advanced materials known as frustrated magnets. In these systems, the electron spins—the tiny magnetic moments carried by each electron—cannot settle on an orientation because competing interactions pull them in different directions. These materials have unique and fascinating properties that could translate to novel applications in the energy and information technology industries.
Scientists from Tokyo Metropolitan University have re-engineered the popular Lattice-Boltzmann Method (LBM) for simulating the flow of fluids and heat, making it lighter and more stable than the state-of-the-art.
By formulating the algorithm with a few extra inputs, they successfully got around the need to store certain data, some of which span the millions of points over which a simulation is run. Their findings might overcome a key bottleneck in LBM: memory usage.
The work is published in the journal Physics of Fluids.
The Large and Small Magellanic Clouds are irregular dwarf galaxies and satellites of the Milky Way. The LMC is about 163,000 light-years away and the SMC is about 206,000 light-years away, and their close proximity makes them excellent laboratories for the study of galaxies in general. The Clouds are the focus of a new research group being formed at the Leibniz Institute for Astrophysics Potsdam (AIP).
Both clouds are home to numerous objects and regions that capture astronomers’ attention. The LMC hosts the Tarantula Nebula, an extremely active star-forming region that contains some of the largest stars known. The SMC hosts NGC 346, an open star cluster that contains numerous massive stars and is still forming many high-mass stars. The Clouds also contain variable stars that act as standard candles in the cosmic distance ladder. That’s just a sample from a long list of the clouds’ interesting features.
It can be easier to study things like star formation in galaxies other than the Milky Way, because we’re inside the Milky Way and can’t see all of it. The Large and Small Magellanic Clouds are excellent natural laboratories to study how galaxies evolve because astronomers can see them from a good vantage point.