Menu

Blog

Archive for the ‘physics’ category: Page 2

Mar 9, 2024

Evidence of phonon chirality from impurity scattering in the antiferromagnetic insulator strontium iridium oxide

Posted by in categories: materials, physics

The thermal hall effect (THE) is a physical phenomenon characterized by tiny transverse temperature differences occurring in a material when a thermal current passes through it and a perpendicular magnetic field is applied to it. This effect has been observed in a growing number of insulators, yet its underlying physics remains poorly understood.

Researchers at Université de Sherbrooke in Canada have been trying to identify the mechanism behind this effect in different materials. Their most recent paper, published in Nature Physics, specifically examined this effect in the antiferromagnetic strontium iridium oxide (Sr2IrO4).

“Our current research activity on the THE in insulators started with our discovery of a large THE in cuprate superconductors,” Louis Taillefer, co-author of the paper, told Phys.org.

Mar 9, 2024

Astrophysicists unveil new phenomenon challenging textbook definition of white dwarf stars

Posted by in categories: energy, physics, space

Scientists have revealed why some white dwarfs mysteriously stop cooling—changing ideas on just how old stars really are and what happens to them when they die.

White dwarf stars are universally believed to be ‘’ that continuously cool down over time. However, in 2019, data from the European Space Agency’s (ESA’s) Gaia satellite discovered a population of white dwarf stars that have stopped for more than eight billion years. This suggested that some can generate significant extra energy, at odds with the classical ‘dead star’ picture, and astronomers initially were not sure how this could happen.

Today, new research published in Nature, led by Dr. Antoine Bédard from the University of Warwick and Dr. Simon Blouin from the University of Victoria (Canada), unveils the mechanism behind this baffling observation.

Mar 9, 2024

Observations Explore Radio Jet of a Powerful Quasar

Posted by in categories: cosmology, physics

European astronomers have conducted very long baseline interferometric (VLBI) observations of a radio jet structure in a powerful quasar known as PKS 2215+020. The collected VLBI data provide important insights into the properties of this jet, suggesting that PKS 2215+020 is a blazar. The findings were presented February 17 in the Universe journal.

Quasars, or quasi-stellar objects (QSOs) are active galactic nuclei (AGN) of very high luminosity, emitting electromagnetic radiation observable in radio, infrared, visible, ultraviolet and X-ray wavelengths.

They are among the brightest and most distant objects in the known universe, and serve as fundamental tools for numerous studies in astrophysics as well as cosmology. For instance, quasars have been used to investigate the large-scale structure of the universe and the era of reionization. They also improve our understanding of the dynamics of supermassive black holes and the intergalactic medium.

Mar 9, 2024

A key to the future of robots could be hiding in liquid crystals

Posted by in categories: chemistry, physics, robotics/AI

Robots and cameras of the future could be made of liquid crystals, thanks to a new discovery that significantly expands the potential of the chemicals already common in computer displays and digital watches.

The findings, a simple and inexpensive way to manipulate the molecular properties of liquid crystals with , are now published in Advanced Materials.

“Using our method, any lab with a microscope and a set of lenses can arrange the liquid crystal alignment in any pattern they’d want,” said author Alvin Modin, a doctoral researcher studying physics at Johns Hopkins. “Industrial labs and manufacturers could probably adopt the method in a day.”

Mar 9, 2024

Researchers reveal anomalous heating in the sun’s upper atmosphere

Posted by in categories: physics, satellites

In a study published in The Astrophysical Journal, researchers from the Yunnan Observatories of the Chinese Academy of Sciences depicted a complete physical image of the anomalous heating in the upper atmosphere of the sun (the solar corona and the solar chromosphere).

The enigma of the corona’s anomalous heating stands as one of the eight challenges in modern astronomy. Similarly, the anomalous heating of the chromosphere continues to baffle solar physicists.

Observations gleaned from large telescopes and satellites have revealed potential magnetic activities that could be the cause of this heating. Theoretical research has proposed various heating modes, yet none have been definitively proven to be the cause. As it stands, our understanding of how the sun’s upper atmosphere is heated remains incomplete.

Mar 9, 2024

The Bizarre Mystery of White Holes

Posted by in categories: cosmology, physics, space travel

An exploration of the inverse of a black hole, a white hole and what that might mean for future physics.

The new JMG Clips channel for sleep!

Continue reading “The Bizarre Mystery of White Holes” »

Mar 8, 2024

Ask Ethan: How do symmetries work in physics?

Posted by in category: physics

Symmetries aren’t just about folding or rotating a piece of paper, but have a profound array of applications when it comes to physics.

Mar 3, 2024

Wait … Did We Finally Find the Source of Dark Energy?!

Posted by in categories: cosmology, physics

For the first time ever, we can explain its entire existence with no new physics.

Mar 2, 2024

New laser experiment spins light like a merry-go-round

Posted by in categories: physics, space travel

In day-to-day life, light seems intangible. We walk through it and create and extinguish it with the flip of a switch. But, like matter, light actually carries a little punch—it has momentum. Light constantly nudges things and can even be used to push spacecraft. Light can also spin objects if it carries orbital angular momentum (OAM)—the property associated with a rotating object’s tendency to keep spinning.

Scientists have known that light can have OAM since the early 90s, and they’ve discovered that the OAM of light is associated with swirls or vortices in the light’s phase—the position of the peaks or troughs of the electromagnetic waves that make up the light. Initially, research on OAM focused on vortices that exist in the cross-section of a light beam—the phase turning like the propeller of a plane flying along the light’s path.

But in recent years, physicists at UMD, led by UMD Physics Professor Howard Milchberg, have discovered that light can carry its OAM in a vortex turned to the side—the phase spins like a wheel on a car, rolling along with the light. The researchers called these light structures spatio-temporal optical vortices (STOVs) and described the momentum they carry as transverse OAM.

Mar 2, 2024

Astrophysicists keep finding things that “shouldn’t exist”. I think I know why

Posted by in categories: physics, space

The first 500 people to use my link will get a 1 month free trial of Skillshare https://skl.sh/sabinehossenfelder03241

You have probably seen headlines in the past years about lots of things out there in the cosmos that, according to astrophysicists \.

Page 2 of 27812345678Last