Toggle light / dark theme

How Ramanujan’s formulae for pi connect to modern high energy physics

Most of us first hear about the irrational number π (pi)—rounded off as 3.14, with an infinite number of decimal digits—in school, where we learn about its use in the context of a circle. More recently, scientists have developed supercomputers that can estimate up to trillions of its digits.

Now, physicists at the Center for High Energy Physics (CHEP), Indian Institute of Science (IISc) have found that pure mathematical formulas used to calculate the value of pi 100 years ago has connections to fundamental physics of today—showing up in theoretical models of percolation, turbulence, and certain aspects of black holes.

The research is published in the journal Physical Review Letters.

Seeing physics as a mountain landscape for classification of nonlinear systems

Imagine standing on top of a mountain. From this vantage point, we can see picturesque valleys and majestic ridges below, and streams wind their way downhill. If a drop of rain falls somewhere on this terrain, gravity guides it along a path until it settles in one of the valleys. The trajectory traced by this droplet is known as a flow line, a path that indicates the direction of movement determined by the landscape’s gradient.

The complete network of valleys, ridges, and flow lines forms a topographic (or cartographic) map that captures the organization of the landscape. This organization, which remains stable as long as the terrain does not change, corresponds to a kind of “topological invariant,” as physicists would call it: It characterizes the global structure of the flows without reference to local details.

Now imagine that a jolt goes through the landscape and it changes, with new valleys appearing, others merging and ridges shifting. The flow lines reorganize accordingly, forming a new pattern of connections. Comparing these patterns—like two maps placed next to each other—reveals how the system’s topology evolves when its underlying conditions change.

Surprise! Solar System Moves 3x Faster Than Predicted

🌏 Get NordVPN 2Y plan + 4 months extra here ➼ https://NordVPN.com/sabine It’s risk-free with Nord’s 30-day money-back guarantee! ✌

According to new data analysis, our solar system is traveling through the universe roughly 3 times faster than our current models predict it should be moving. Why is this, and why does it matter? Let’s take a look.

Paper: https://journals.aps.org/prl/abstract… mugs, posters and more: ➜ https://sabines-store.dashery.com/ 💌 Support me on Donorbox ➜ https://donorbox.org/swtg 👉 Transcript with links to references on Patreon ➜ / sabine 📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/ 📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… 👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 📚 Buy my book ➜ https://amzn.to/3HSAWJW #science #sciencenews #physics #cosmology.

👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ / sabine.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
📚 Buy my book ➜ https://amzn.to/3HSAWJW

#science #sciencenews #physics #cosmology

The 15 Most Advanced Alien Races In Fiction

Discover the 15 most advanced alien races ever imagined in science fiction—from reality-bending cosmic civilizations to hyper-intelligent species capable of rewriting the laws of physics.

In this video, we explore how these alien races evolved, the technologies they command, and why they stand above all others in the sci-fi universe. Whether you’re into Star Wars, Star Trek, Marvel, DC, Mass Effect, Stargate, Halo, or classic literature, this countdown covers the most iconic and most powerful extraterrestrial species ever written.

👉 Which alien race do YOU think is the most advanced? Drop your pick in the comments!
If you love sci-fi lore, alien analysis, worldbuilding breakdowns, and deep-dive rankings, make sure to LIKE, SUBSCRIBE, and hit the bell for more universe-spanning content!

Why your faucet drips: Water jet breakup traced to angstrom-scale thermal capillary waves

Some phenomena in our daily lives are so commonplace that we don’t realize there could be some very interesting physics behind them. Take a dripping faucet: why does the continuous stream of water from a faucet eventually break up into individual droplets? A team of physicists studied this question and reached surprising conclusions.

The breakthrough in understanding how a water jet breaks up into droplets was made by a team consisting of Stefan Kooij, Daniel T. A. Jordan, Cees J. M. van Rijn, and Daniel Bonn from the University of Amsterdam (Van der Waals-Zeeman Institute / Institute of Physics), along with Neil M. Ribe from the Université Paris-Saclay. The study is published in the journal Physical Review Letters.

The case for an antimatter Manhattan project

Chemical rockets have taken us to the moon and back, but traveling to the stars demands something more powerful. Space X’s Starship can lift extraordinary masses to orbit and send payloads throughout the solar system using its chemical rockets, but it cannot fly to nearby stars at 30% of light speed and land. For missions beyond our local region of space, we need something fundamentally more energetic than chemical combustion, and physics offers, or, in other words, antimatter.

When antimatter encounters ordinary matter, they annihilate completely, converting mass directly into energy according to Einstein’s equation E=mc². That c² term is approximately 10¹⁷, an almost incomprehensibly large number. This makes antimatter roughly 1,000 times more energetic than nuclear fission, the most powerful energy source currently in practical use.

As a source of energy, antimatter can potentially enable spacecraft to reach nearby stars at significant fractions of the speed of light. A detailed technical analysis by Casey Handmer, CEO of Terraform Industries, outlines how humanity could develop practical antimatter propulsion within existing spaceflight budgets, requiring breakthroughs in three critical areas; production efficiency, reliable storage systems, and engine designs that can safely harness the most energetic fuel physically possible.

At BYU, Nobel Prize-winning modern Galileo talks about his work that helped prove Einstein right about gravitational waves

The universe occasionally produces a huge surprise that proves physicists wrong, says Kip Thorne, who grew up in Logan, Utah, with Elder Quentin L. Cook and Merlin Olsen.

750 Million at Risk: New Study Warns Extreme Water Scarcity Is Closer Than We Think

Climate simulations reveal that Day Zero Drought conditions are approaching rapidly worldwide, putting vast populations at risk of severe water scarcity. A new study in Nature Communications from researchers at the IBS Center for Climate Physics (ICCP) at Pusan National University in the Republic

Scientists Claim to Detect Dark Matter for the First Time Ever

A team of astronomers say they may have detected dark matter, the invisible substance thought to make up over 85 percent of all matter in the universe, for the first time in history.

The claim is controversial, and the findings, published in a new study in the Journal of Cosmology and Astroparticle Physics, will need to be borne out by further observations. But at least until it gets picked apart by other physicists, it’s one of the most exciting developments in the hunt for this omnipresent specter haunting the cosmos.

“This could be a crucial breakthrough in unraveling the nature of dark matter,” study author Tomonori Totani, an astronomer at the University of Tokyo, told The Guardian.

New universal law predicts how most objects shatter, from dropped bottles to exploding bubbles

When a plate drops or a glass smashes, you’re annoyed by the mess and the cost of replacing them. But for some physicists, the broken pieces are a source of fascination: Why does everything break into such a huge variety of sizes? Now, Emmanuel Villermaux at Aix-Marseille University in France and the University Institute of France has come up with a simple, elegant law for how objects shatter, whether they are brittle solids, liquid drops, or exploding bubbles.

Scientists have long suspected that there was something universal about fragmentation. If you count how many fragments fall into each size range and make a graph of that distribution, it would have the same shape regardless of the object that shattered.

/* */