Toggle light / dark theme

New materials, old physics—the science behind how your winter jacket keeps you warm

As the weather grows cold this winter, you may be one of the many Americans pulling their winter jackets out of the closet. Not only can this extra layer keep you warm on a chilly day, but modern winter jackets are also a testament to centuries-old physics and cutting-edge materials science.

Winter jackets keep you warm by managing heat through the three classical modes of heat transfer —conduction, convection and radiation—all while remaining breathable so sweat can escape.

The physics has been around for centuries, yet modern material innovations represent a leap forward that let those principles shine.

Physicists Crack a New Code To Explore Dark Matter’s Hidden Life

A new computational breakthrough is giving scientists a clearer view into how dark matter structures evolve. Dark matter has remained one of the biggest mysteries in cosmology for almost a hundred years, shaping the universe while remaining invisible and poorly understood. A new study from resear

The Causal Accessibility Horizon: A Structural Limit on Finite-Time Reachability

Across physics, chemistry, biology, and engineered systems, the operationally significant questionis often not whether a system will eventually reach a particular state, but whether it can be broughtthere within the time available. This paper establishes a single structural necessity: when causalresponse propagates at finite speed, there exist states that are theoretically admissible but practicallyunreachable within any finite time horizon. We formalize this as the causal accessibility horizon—ageometric boundary determined solely by propagation speed and actuation geometry, beyond whichno control action can have effect by a given time T. This constraint is categorical: it arises fromthe hyperbolic structure of finite-speed dynamics and is logically independent of dissipation, whichgoverns amplitude decay within the accessible region but does not determine its boundary. Theresult reframes questions of control, safety, and stabilization as finite-time reachability problemssubject to irreducible geometric limits.

Behold the Manifold, the Concept that Changed How Mathematicians View Space

The world is full of such shapes—ones that look flat to an ant living on them, even though they might have a more complicated global structure. Mathematicians call these shapes manifolds. Introduced by Bernhard Riemann in the mid-19th century, manifolds transformed how mathematicians think about space. It was no longer just a physical setting for other mathematical objects, but rather an abstract, well-defined object worth studying in its own right.

This new perspective allowed mathematicians to rigorously explore higher-dimensional spaces—leading to the birth of modern topology, a field dedicated to the study of mathematical spaces like manifolds. Manifolds have also come to occupy a central role in fields such as geometry, dynamical systems, data analysis, and physics.

New Experiment Sees Order Emerge from Chaos

🌏 Get NordVPN 2Y plan + 4 months extra here ➼ https://NordVPN.com/sabine It’s risk-free with Nord’s 30-day money-back guarantee! ✌

Physicists have theorized for decades that chaos doesn’t just destroy order, it can also create it. This could in turn mean that the laws of nature that make our universe the way it is could be emergent from chaos. In a recent study, physicists demonstrated order emerging chaos in an experiment. Let’s take a look.

Paper: https://www.nature.com/articles/s4156… mugs, posters and more: ➜ https://sabines-store.dashery.com/ 💌 Support me on Donorbox ➜ https://donorbox.org/swtg 👉 Transcript with links to references on Patreon ➜ / sabine 📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/ 📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… 👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 📚 Buy my book ➜ https://amzn.to/3HSAWJW #science #sciencenews #physics #chaos.

👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ / sabine.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
📚 Buy my book ➜ https://amzn.to/3HSAWJW

#science #sciencenews #physics #chaos

Research uncovers the telltale tail of black hole collisions

When black holes collide, the impact radiates into space like the sound of a bell in the form of gravitational waves. But after the waves, there comes a second reverberation—a murmur that physicists have theorized but never observed.

An international collaboration has for the first time simulated in detail what these whispers—called late-time gravitational wave tails —might “sound” like.

“So far, we’ve only seen tails in simplified models, not in full simulations of numerical relativity,” said Leo Stein, University of Mississippi associate professor of physics and astronomy and co-author of the study. “These are the first fully numerical simulations where we saw tails clearly.”

This Crystal Doesn’t Melt Like Ice: Physicists Capture a Strange New Phase

New research offers clearer insight into how phase transitions unfold at the atomic scale in real materials. When ice turns into water, the change happens almost instantly. Once the melting temperature is reached, the rigid structure of the solid collapses and becomes a flowing liquid. This abrup

Uranus and Neptune are hiding something big beneath the blue

Uranus and Neptune may not be the icy worlds we’ve long imagined. A new Swiss-led study uses innovative hybrid modeling to reveal that these planets could just as easily be dominated by rock as by water-rich ices. The findings also help explain their bizarre, multi-poled magnetic fields and open the door to a wider range of possible interior structures. But major uncertainties remain, and only future space missions will The Solar System is commonly grouped by planetary composition: four rocky terrestrial planets (Mercury, Venus, Earth and Mars), two massive gas giants (Jupiter and Saturn), and a pair of ice giants (Uranus and Neptune). However, new research from a scientific team at the University of Zurich (UZH) suggests that Uranus and Neptune may contain far more rock than previously assumed. The study does not argue that these planets must be either water-rich or rock-rich. Instead, it questions the long-standing idea that an ice-heavy interior is the only conclusion supported by available data. This broader interpretation also aligns with the finding that Pluto, a dwarf planet, is dominated by rock.

To better understand what lies inside Uranus and Neptune, the researchers created a specialized simulation technique. “The ice giant classification is oversimplified as Uranus and Neptune are still poorly understood,” says Luca Morf, PhD student at the University of Zurich and lead author of the work. “Models based on physics were too assumption-heavy, while empirical models are too simplistic. We combined both approaches to get interior models that are both “agnostic” or unbiased and yet, are physically consistent.”

The process begins with a randomly generated density profile representing the interior of each planet. The team then determines the gravitational field that would match observational measurements and uses that information to infer the possible composition. The cycle is repeated until the model best fits all available data.

Why a chiral magnet is a direction-dependent street for electrons

RIKEN physicists have discovered for the first time why the magnitude of the electron flow depends on direction in a special kind of magnet. This finding could help to realize future low-energy devices.

The work is published in the journal Science Advances.

In a normal magnet, all the spins of electrons point in the same direction. In a special class of magnets known as chiral magnets, the electron spins resemble a spiral staircase, having a helical organization.

The simulation hypothesis: Mathematical framework redefines what it means for one universe to simulate another

The simulation hypothesis—the idea that our universe might be an artificial construct running on some advanced alien computer—has long captured the public imagination. Yet most arguments about it rest on intuition rather than clear definitions, and few attempts have been made to formally spell out what “simulation” even means.

A new paper by SFI Professor David Wolpert aims to change that. In Journal of Physics: Complexity, Wolpert introduces the first mathematically precise framework for what it would mean for one universe to simulate another—and shows that several longstanding claims about simulations break down once the concept is defined rigorously.

His results point to a far stranger landscape than previous arguments suggest, including the possibility that a universe capable of simulating another could itself be perfectly reproduced inside that very simulation.

/* */