Toggle light / dark theme

Created using Paragraph ai.

Time travel has long been a popular theme in movies, but scientists believe that the concept of time teleportation is unlikely in reality. However, they do not dismiss the possibility of time travel altogether. The laws of physics suggest that time travel may be possible, but the details are complex.

Physicists explain that traveling to the near future is relatively simple, as we are all doing it right now at a rate of one second per second. Additionally, Einstein’s special theory of relativity states that the speed at which we move affects the flow of time. In other words, the faster we travel, the slower time passes. Furthermore, Einstein’s general theory of relativity suggests that gravity also impacts the flow of time. The stronger the nearby gravity, the slower time goes.

Within a year, Karl Schwarzschild, who was “a lieutenant in the German army, by conscription, but a theoretical astronomer by profession,” as Mann puts it, heard of Einstein’s theory. He was the first person to work out a solution to Einstein’s equations, which showed that a singularity could form–and nothing, once it got too close, could move fast enough to escape a singularity’s pull.

Then, in 1939, physicists Rober Oppenheimer (of Manhattan Project fame, or infamy) and Hartland Snyder tried to find out whether a star could create Schwarzschild’s impossible-sounding object. They reasoned that given a big enough sphere of dust, gravity would cause the mass to collapse and form a singularity, which they showed with their calculations. But once World War II broke out, progress in this field stalled until the late 1950s, when people started trying to test Einstein’s theories again.

Physicist John Wheeler, thinking about the implications of a black hole, asked one of his grad students, Jacob Bekenstein, a question that stumped scientists in the late 1950s. As Mann paraphrased it: “What happens if you pour hot tea into a black hole?”

Most of the matter and energy in the Universe are in mysterious, invisible forms that cannot be explained by physics as we know it. But it is possible for us to uncover the dark side of the Universe, and CERN physicist John Ellis knows how.

John Ellis is a Maxwell prize-winning theoretical physicist, and is considered one of the world’s leading physicists. John is currently Clerk Maxwell Professor of Theoretical Physics at King’s College London, and since 1978 has held an indefinite contract at CERN.

The Google employee who claimed last June his company’s A.I. model could already be sentient, and was later fired by the company, is still worried about the dangers of new A.I.-powered chatbots, even if he hasn’t tested them himself yet.

Blake Lemoine was let go from Google last summer for violating the company’s confidentiality policy after he published transcripts of several conversations he had with LaMDA, the company’s large language model he helped create that forms the artificial intelligence backbone of Google’s upcoming search engine assistant, the chatbot Bard.

Lemoine told the Washington Post at the time that LaMDA resembled “a 7-year-old, 8-year-old kid that happens to know physics” and said he believed the technology was sentient, while urging Google to take care of it as it would a “sweet kid who just wants to help the world be a better place for all of us.”

Dr. Rupert Sheldrake believes that memory is inherent to nature, and has spent the last forty years of his career investigating slippery, esoteric phenomena at the very edges of empiricism. Some of the results are intriguing — dogs that know when their owners have started the long journey home, crosswords that become easier to solve a few days after they’ve been published in the papers, IQ scores increase generation after generation. His work is ongoing, the territory marginal, and the implications immense.

Support the scientific revolution by joining our Patreon: https://bit.ly/3lcAasB
Support us both when you pick up one of Rupert’s books: https://amzn.to/3xdrRmo.

Let us know what you think in the comments or on our Discord: https://discord.gg/MJzKT8CQub.

00:00:00 Go!

The Fluidic Telescope (FLUTE) project team, jointly led by NASA and Technion–Israel Institute of Technology, envisions a way to make huge circular self-healing mirrors in-orbit to further the field of astronomy. Larger telescopes collect more light, and they allow astronomers to peer farther into space and see distant objects in greater detail.

These next-generation large space observatories would study the highest priority astrophysics targets, including first generation stars—the first to shine and flame out after the Big Bang—early galaxies, and Earth-like exoplanets. These observatories could help address one of humanity’s most important science questions: “Are we alone in the universe?”

Like a carry-on suitcase, payloads launching to space need to stay within allowable size and weight limits to fly. Already pushing size limits, the state-of-the-art 21 foot (6.5 meter) aperture James Webb Space Telescope needed to be folded up origami-style—including the mirror itself—to fit inside the rocket for its ride to space. The aperture of an optical space observatory refers to the size of the telescope’s , the surface that collects and focuses incoming light.

A new study published in The Astrophysical Journal Letters.

The Astrophysical Journal Letters (ApJL) is a peer-reviewed scientific journal that focuses on the rapid publication of short, significant letters and papers on all aspects of astronomy and astrophysics. It is one of the journals published by the American Astronomical Society (AAS), and is considered one of the most prestigious journals in the field.

Scientists have created two-dimensional photonic time crystals that amplify light, with potential applications in improving wireless communications and laser technology.

Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings, described in a paper published in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.