Menu

Blog

Archive for the ‘particle physics’ category: Page 77

Apr 21, 2024

The World’s First X-Ray Of A Single Atom

Posted by in category: particle physics

Scientists could see what those atoms got up to in the molecules they were placed in.

Apr 21, 2024

Unlocking the Secrets of Space Chemistry With Cold Coulomb Crystals

Posted by in categories: chemistry, particle physics, space travel

Researchers at the University of Colorado Boulder have developed experiments to replicate the chemical reactions of the Interstellar Medium, using techniques like laser cooling and mass spectrometry to observe interactions between ions and molecules.

While it may not look like it, the interstellar space between stars is far from empty. Atoms, ions, molecules, and more reside in this ethereal environment known as the Interstellar Medium (ISM). The ISM has fascinated scientists for decades, as at least 200 unique molecules form in its cold, low-pressure environment. It’s a subject that ties together the fields of chemistry, physics, and astronomy, as scientists from each field work to determine what types of chemical reactions happen there.

Now, in the recently published cover article of the Journal of Physical Chemistry A, JILA Fellow and University of Colorado Boulder Physics Professor Heather Lewandowski and former JILA graduate student Olivia Krohn highlight their work to mimic ISM conditions by using Coulomb crystals, a cold pseudo-crystalline structure, to watch ions and neutral molecules interact with each other.

Apr 21, 2024

Precision Spectroscopy Now Possible Under Starved-Light Conditions

Posted by in categories: chemistry, particle physics, quantum physics

In a study recently published in Nature, researchers from the Max Born Institute in Berlin, Germany, and the Max-Planck Institute of Quantum Optics in Garching have unveiled a new technique for deciphering the properties of matter with light, that can simultaneously detect and precisely quantify many substances with a high chemical selectivity.

Their technique interrogates the atoms and molecules in the ultraviolet spectral region at very feeble light levels. Using two optical frequency combs and a photon counter, the experiments open up exciting prospects for conducting dual-comb spectroscopy in low-light conditions and they pave the way for novel applications of photon-level diagnostics, such as precision spectroscopy of single atoms or molecules for fundamental tests of physics and ultraviolet photochemistry in the Earth’s atmosphere or from space telescopes.

Apr 20, 2024

Physicists Suggest Universe Is Full of Material Moving Faster Than Light

Posted by in categories: cosmology, particle physics

Dark matter may in fact be made up of light-barrier breaking particles called tachyons, the researchers posit.

Apr 19, 2024

Ghost particle on the scales: Research offers more precise determination of neutrino mass

Posted by in category: particle physics

What is the mass of a neutrino at rest? This is one of the big unanswered questions in physics. Neutrinos play a central role in nature. A team led by Klaus Blaum, Director at the Max Planck Institute for Nuclear Physics in Heidelberg, has now made an important contribution in “weighing” neutrinos as part of the international ECHo collaboration. Their findings are published in Nature Physics.

Using a Penning trap, it has measured the change in mass of a holmium-163 isotope with extreme precision when its nucleus captures an electron and turns into dysprosium-163. From this, it was able to determine the Q value 50 times more accurately than before. Using a more precise Q-value, possible systematic errors in the determination of the neutrino mass can be revealed.

In the 1930s, it turned out that neither the energy nor the momentum balance is correct in the radioactive beta decay of an atomic nucleus. This led to the postulate of “ghost particles” that “secretly” carry away energy and momentum. In 1956, experimental proof of such neutrinos was finally obtained. The challenge: neutrinos only interact with other particles of matter via the weak interaction that is also underlying the beta decay of an atomic nucleus.

Apr 19, 2024

Spintronics: A new path to room temperature swirling spin textures

Posted by in categories: materials, particle physics

In some materials, spins form complex magnetic structures within the nanometer and micrometer scale in which the magnetization direction twists and curls along specific directions. Examples of such structures are magnetic bubbles, skyrmions, and magnetic vortices.

Apr 19, 2024

Scientists are one step closer to knowing the mass of ghostly neutrinos — possibly paving the way to new physics

Posted by in category: particle physics

By precisely measuring the mass of neutrinos — ghostly particles that stream through your body by the billions each second — physicists could find some glaring holes in the Standard Model of particle physics. A new experiment has taken them one step closer.

Apr 19, 2024

The big idea of Grand Unified Theories of physics

Posted by in categories: particle physics, quantum physics

I found this on NewsBreak: The big idea of Grand Unified Theories of physics.

Apr 19, 2024

School on Quantum Chaos

Posted by in categories: education, evolution, particle physics, quantum physics, space

Quantum chaos focuses on the quantum manifestations of classical chaos. A characteristic of classical chaos is the exponential sensitivity of the dynamics with respect to infinitesimal changes in the initial conditions. Thus, to classify classical dynamics it is sufficient to follow phase space trajectories starting infinitesimally close to each other and to determine the evolution of their distances with respect to each other with time. Because of the uncertainty relation, this is no longer possible in the corresponding quantum system. One important aspect of quantum chaos is the understanding of features of the classical dynamics in terms of the fluctuation properties in the energy spectra of closed quantum systems or of the fluctuations exhibited by the scattering matrix elements describing open ones. The fluctuation properties are predicted to be universal, that is, to be the same for systems belonging to the same universality class and exhibiting the same chaotic behavior in the corresponding classical dynamics and to be describable by random matrix theory. Furthermore, random-matrix models that had been developed for the scattering matrix associated with compound-nuclear reactions have been shown to be applicable to quantum-chaotic scattering processes. A second important aspect within the field of quantum chaos concerns the semiclassical approach. In this context, one of the most important achievements was the periodic orbit theory pioneered by Gutzwiller, which led to understanding the impact of the classical dynamics on the properties of the quantum system in terms of purely classical quantities. The focus of research within the field of quantum chaos has been extended to relativistic quantum systems and to many-body quantum systems with focus on random matrix theory and the semiclassical approach. In distinction to single-particle systems, many-body systems like atomic nuclei do not have a classical analogue. In recent years different measures of chaos and models have been developed. Here, a prominent model is the Sachdev-Ye-Kitaev model which serves as a paradigm for the study of quantum chaos in strongly interacting many-body systems. The school is aimed at PhD students, post-docs and outstanding master students and the first part will provide a survey of single-and many-body quantum chaos and applications based on random-matrix theory and the semiclassical approach. The second part of the school will focus on current aspects of research in the context of many-body quantum chaos. There is no registration fee and limited funds are available for travel and local expenses. Organizers: Hilda Cerdeira (IFT-UNESP, Brazil) Barbara Dietz-Pilatus (Institute for Basic Science (IBS), Republic of Korea)

Apr 19, 2024

The idea that matter is mostly empty space is mostly wrong

Posted by in category: particle physics

Practically all of the matter we see and interact with is made of atoms, which are mostly empty space. Then why is reality so… solid?

Page 77 of 593First7475767778798081Last