Menu

Blog

Archive for the ‘particle physics’ category: Page 558

Mar 16, 2016

There’s No Cloning in Quantum Mechanics, So the Star Trek Transporter Really Is a Suicide Box

Posted by in categories: health, particle physics, quantum physics

Yesterday, a report came from a tech company in Asia that they are proposing to do Quantum teleporting on humans. So, we have that camp; today we have the other camp with this article stating to do so means death. Personally, I have my doubts around humans or animals of any sort being able to teleport like Star Trek; great concept. However, to do so means breaking down your make up into particles and hopefully without killing you, the particles transport and reassemble themselves and everything remains healthy and functioning. Wish the test subjects all the best.


Remember last week’s video about the trouble with Star Trek’s transporter (a.k.a. a “suicide box”) by CGP Grey, delving into whether the teleported version of yourself would really be, well, you? Henry Reich of Minute Physics has posted a video response with his own resolution to the logical paradox.

Continue reading “There’s No Cloning in Quantum Mechanics, So the Star Trek Transporter Really Is a Suicide Box” »

Mar 15, 2016

Exponential protection of zero modes in Majorana islands

Posted by in categories: computing, particle physics, quantum physics

Pseudo-Particles for Error-Free Quantum Computing meet the team and their write up who made it happen through

S. M. Albrecht,

A. P. Higginbotham,

Continue reading “Exponential protection of zero modes in Majorana islands” »

Mar 15, 2016

Watch a single sheet of atoms fold up for the first time

Posted by in category: particle physics

Watch a single sheet of atoms fold up for the first time

More Videos by New Scientist.

Read more

Mar 14, 2016

Quantum Computers And Their Applications [INFOGRAPHIC]

Posted by in categories: computing, particle physics, quantum physics, robotics/AI

Interesting position that IBM is taking with Quantum Computing. The one challenge that was highlighted in this article around unstable particles actually has been in the process of being resolved by Charles Marcus and colleagues at the University of Copenhagen’s Niels Bohr Institute; Univ. of Copenhagan’s report came out a few weeks ago and it may be a good thing for IBM to connect with the University so they can see how this was resolved.

Also, I don’t believe that we have 3 uniquely different platforms of Quantum as this article highlights. Trying to state that a D-Wave Quantum Computer is not a full Quantum platform or less of a Quantum Platform to is not a fair statement; and I encourage others to pull back from that perspective at this point until Quantum Computing is more evolved and standards around the platform is well defined and approved by industry. Also, the Gartner graph in this article is not one that I embraced given the work on Quantum is showing us the we’re less than 10 yrs away for it in the mainstream instead of Gartners graph showing us Quantum will require more than 10 years to hit the mainstream. And, I saw some of missed marks on Bio-sensors and BMI technology taking more than 10 years on the Gartner graph which is also incorrect since we hearing this week announcements of the new bio-chips which enables bio-sensors and BMIs are making some major steps forward with various devices and implants.


The 3 Types Of Quantum Computers And Their Applications by Jeff Desjardins, Visual Capitalist

Continue reading “Quantum Computers And Their Applications [INFOGRAPHIC]” »

Mar 14, 2016

The ‘great smoky dragon’ of quantum physics

Posted by in categories: nanotechnology, particle physics, quantum physics

Abstract: Since the 17th century, science was intrigued by the nature of light. Isaac Newton was certain that it consists of a stream of particles. His contemporary Christiaan Huygens, however, argued that light is a wave. Modern quantum physics says that both were right. Light can be observed both as particles and as waves — depending which characteristic is measured in an experiment, it presents itself more as one or the other. This so-called wave-particle dualism is one of the foundational principles of quantum physics. This questions our common sense: can one and the same indeed be of two contradictory natures at the same time?

Read more

Mar 11, 2016

Chinese scientists realize quantum simulation of the Unruh effect

Posted by in categories: computing, cosmology, electronics, particle physics, quantum physics

Quantum mechanics and relativity theory are two pillars of modern physics. With their amalgamation, many novel phenomena have been identified. For example, the Unruh effect [1] is one of the most significant outcomes of the quantum field theory. This effect serves as an important tool to investigate phenomena such as thermal emission of particles from black holes and cosmological horizons [2]. It has been 40 years since the discovery of the Unruh effect, however, this effect is too weak to be observed with current technique. There have been a lot of attempts in searching for the observational evidence of the Unruh effect and in general the experimental observation is still of great challenge. To address this issue, quantum simulators [3, 4] may provide a promising approach. Quantum simulation is widely applied for simulating the quantum systems which cannot be efficiently simulated by classical computers or are not directly tractable by the current techniques in the laboratory.

The researchers, led by Prof. Jiangfeng Du from University of Science and Technology of China, reported an experimental simulation of the Unruh effect with an NMR quantum simulator [5]. The experiments were performed on a Bruker Avance III 400MHz spectrometer. The researchers used a sample of 13C, 1H and 19F nuclear spins in chloroform as the NMR quantum simulator, as shown in Figure 1(a). The simulated Unruh effect on the quantum states can be realized by the pulse sequence acting on the sample, as depicted in Figure 1(b). By the quantum simulator, they experimentally demonstrated the behavior of Unruh temperature with acceleration, which agrees nicely with the theoretical prediction, as shown in Figure 2. Furthermore, they investigated the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown for the first time that the quantum correlations can be created by the Unruh effect from the classically correlated states. This work was recently published in the Science China-Physics, Mechanics & Astronomy.

It is interesting that the Unruh effect was in Feynman’s blackboard as one of the issues to learn at the time of his death in 1988, while it was also Feynman who conceived the idea of quantum simulation in 1982. This quantum simulation of the Unruh effect will provide a promising window to explore the quantum physics of accelerated systems, which widely appear in black hole physics, cosmology and particle physics.

Continue reading “Chinese scientists realize quantum simulation of the Unruh effect” »

Mar 9, 2016

Graphene-Infused Bike Tires Automatically Get Softer While Cornering For Better Grip

Posted by in categories: materials, particle physics, robotics/AI

Graphene, that atomic-scale super material that promises to revolutionize everything from batteries to robots, is already improving the cycling world. Vittoria’s new graphene-infused Mezcal and Morsa bike tires are lightweight, thin, grippy, and everything a cyclist wants in a tire without any tradeoffs.

Choosing what tires to put on your bike usually depends on the conditions in which you’ll be riding. Larger tires provide better grip and durability, but add weight to a bike, while smaller tires are lighter and sleeker but wear out faster and provide minimal traction.

But by adding graphene—that wonder new material made of carbon atoms arranged in a strong honeycomb pattern—Vittoria’s new G+, or Graphene Plus, tires exhibit wonderful new properties. When riding on straightaways, the dual-layer makeup of the G+ tires allows them to remain firm for lower rolling resistance and added speed. But when a cyclist is braking or cornering, the tires get soft for added traction and grip.

Continue reading “Graphene-Infused Bike Tires Automatically Get Softer While Cornering For Better Grip” »

Mar 9, 2016

New LHC results suggest there’s a flaw in the standard model of physics

Posted by in categories: particle physics, space

Recent results from the Large Hadron Collider (LHC) in Switzerland hint at activity going on beyond the standard model of particle physics — which means we could finally be about to enter a new era in physics.

Right now, the standard model is the best explanation we have for how the Universe works and how it’s held together. But there are big gaps — most noticeably, the fact that the model doesn’t actually account for gravity — so scientists have spent decades probing the boundaries of physics for signs of any activity that the standard model can’t explain. And now they’ve found one.

The discrepancy deals with a particle called the B meson. According to the standard model, B mesons should decay at very specific angles and frequencies — but those predictions don’t match up what’s been seen in LHC experiments, suggesting that something else is going on. And if we can figure out what that is, it’ll take us closer to unlocking some of the mysteries in our Universe.

Continue reading “New LHC results suggest there’s a flaw in the standard model of physics” »

Mar 8, 2016

Windows Could Soon Power the Entire Building

Posted by in categories: habitats, materials, particle physics, quantum physics, solar power, sustainability

Q-Dots windows to power homes and other buildings.


Researchers at the Los Alamos National Lab may have found a way to take quantum dots and put them in your ordinary windows to turn them into solar collectors.

Continue reading “Windows Could Soon Power the Entire Building” »

Mar 7, 2016

Multi-scale simulations solve a plasma turbulence mystery

Posted by in categories: nuclear energy, particle physics, supercomputing

Solving the turbulence plasma mystery.


Cutting-edge simulations run at Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center (NERSC) over a two-year period are helping physicists better understand what influences the behavior of the plasma turbulence that is driven by the intense heating necessary to create fusion energy. This research has yielded exciting answers to long-standing questions about plasma heat loss that have previously stymied efforts to predict the performance of fusion reactors and could help pave the way for this alternative energy source.

The key to making fusion work is to maintain a sufficiently high temperature and density to enable the atoms in the reactor to overcome their mutual repulsion and bind to form helium. But one side effect of this process is turbulence, which can increase the rate of plasma, significantly limiting the resulting energy output. So researchers have been working to pinpoint both what causes the turbulence and how to control or possibly eliminate it.

Continue reading “Multi-scale simulations solve a plasma turbulence mystery” »