Menu

Blog

Archive for the ‘particle physics’ category: Page 509

Jul 6, 2017

Plasma rocket engine breakthrough as researchers solve key issue

Posted by in categories: innovation, particle physics

Plasma, an extremely hot gas with electrically charged particles, is found all throughout the universe and is influenced by environmental forces, such as magnetic fields.

The complex behaviours observed in space and in the lab suggest plasma can generate the magnetic field in the opposite direction to the one applied, according to the researchers from Tohoku University.

This causes the field lines to diverge, much like magnets with their North poles facing toward each other.

Continue reading “Plasma rocket engine breakthrough as researchers solve key issue” »

Jun 30, 2017

IBM has made Carbon nanotubes transistors smaller and faster than silicon

Posted by in categories: computing, nanotechnology, particle physics

IBM scientists have made carbon nanotube transistors smaller and faster silicon transistors. Carbon nanotube transistors have long had the potential to be better than silicon, but this is the first time when that promise has been realized. Now IBM and others will have to scale up superior carbon nanotube devices.

IBM scientists have been experimenting with carbon nanotubes, rolled-up sheets of carbon atoms just 1 nanometer, or a billionth of a meter, in diameter. But difficulties working with the material have meant that, for optimal performance, nanotube transistors have to be even larger than current silicon transistors, which are about 100 nanometers across. To cut that number down, a team of scientists used a new technique to build the contacts that draw current into and out of the carbon nanotube transistor. They constructed the contacts out of molybdenum, which can bond directly to the ends of the nanotubes, making them smaller. They also added cobalt so the bonding could take place at a lower temperature, allowing them to shrink the gap between the contacts. Another advance allowed for practical transistors. Carrying enough electrical current from one contact to another requires several nanotube “wires.

Read more

Jun 17, 2017

Quantum entanglement, science’s ‘spookiest’ phenomenon, achieved in space

Posted by in categories: particle physics, quantum physics, science, space

Scientists beamed particles from a satellite to two locations on Earth 750 miles apart — and the particles were still mysteriously connected.

Read more

Jun 12, 2017

Faux particles commit physics faux pas

Posted by in categories: cosmology, particle physics, quantum physics

“For example, Hasan says, “we can test theoretical ideas in the early universe,” simulating how particles may have behaved just after the Big Bang, when Lorentz symmetry may not have been obeyed.”

It’s interesting how often I hear condensed matter physicists justify their work by saying “might be important for something with quantum gravity” while condensed matter physics by itself is much more likely than quantum gravity to be good for something.

Read more

Jun 5, 2017

Simulations Show Superfluid Helium Behaves Like a Black Hole

Posted by in categories: cosmology, particle physics, quantum physics

A cluster of 64 superfluid helium atoms mimic properties similar to a Black hole. Could this lead to the formation of a unified Quantum Gravity theory?

Read more

May 31, 2017

Physicists Have Observed The Light Spectrum of Antimatter For First Time

Posted by in category: particle physics

After two decades of trying, physicists at CERN have reported the first ever measurement of the light emitted by an antimatter atom, revealing that antihydrogen is the exact mirror image of regular hydrogen.

The result, which finally confirms what has long been predicted by the laws of physics, opens up a new way of testing Einstein’s special theory of relativity, and could help us answer one of the biggest mysteries in modern physics — why is there so much more regular matter than antimatter in the Universe?

“This represents a historic point in the decades-long efforts to create antimatter and compare its properties to those of matter,” theoretical physicist Alan Kostelecky from Indiana University, who was not involved in the study, told NPR.

Continue reading “Physicists Have Observed The Light Spectrum of Antimatter For First Time” »

May 27, 2017

Our Quest to Find a One-Sided Magnet Just Took an Unexpected Turn

Posted by in categories: particle physics, quantum physics

Of the many ‘white whales’ that theoretical physicists are pursuing, the elusive magnetic monopole — a magnetic with only one pole — is one of the most confounding.

Compared to the Higgs boson in terms of its potential impact on modern physics, the magnetic monopole has been on scientists’ minds for even longer. And now our best shot at finding it just got weird — two phenomena that resemble the magnetic monopole have become one.

If you’re unfamiliar with the magnetic monopole, it’s a hypothetical particle that’s long been predicted by quantum physics, but no one has ever been able to prove that it exists.

Continue reading “Our Quest to Find a One-Sided Magnet Just Took an Unexpected Turn” »

May 26, 2017

Russian group delivers the first unhackable quantum-safe blockchain

Posted by in categories: bitcoin, cryptocurrencies, cybercrime/malcode, government, particle physics, quantum physics

Quantum computing and the blockchain both get plenty of attention in 2017, and now researchers in Russia have combined the two to create what they claim is an unhackable distributed-ledger platform.

The new technology, described as the “first quantum-safe blockchain,” promises to make it secure for organizations to transfer data without the fear of hacking from even the most powerful computers, in this case, the emerging field of quantum computing. Quantum computers make use of the quantum states of subatomic particles to store information, with the potential to do some calculations far faster than current computers. There’s some dispute whether we have actually reached that point yet, but companies such as Google Inc. are promising that true quantum computing is just around the corner.

“Quantum computers pose a major threat to data security today and could even be used to hack blockchains, destroying everything from cryptocurrencies like bitcoin to secure government communications,” a spokesperson for the Russian Quantum Center told SiliconANGLE. “Because quantum computers can test a large number of combinations at once, they will be able to destroy these digital signatures, leaving the blockchain vulnerable.”

Continue reading “Russian group delivers the first unhackable quantum-safe blockchain” »

May 22, 2017

Moogfest Day Three Highlights: Robot Car, Immortality Bus & Particle Physics

Posted by in categories: life extension, particle physics, robotics/AI, transhumanism, transportation

Here’s a write-up of Moogfest that has a section dedicated to the Immortality Bus and transhumanism:


The ExitEvent team is all hands on deck for the next four days as we try to capture all the cool stuff going on in downtown Durham for Moogfest. We’ll post photos, videos, stories and soundbites as we get them. Feel free to submit your own captures as well!

Continue reading “Moogfest Day Three Highlights: Robot Car, Immortality Bus & Particle Physics” »

May 17, 2017

Open SESAME: At Middle East’s CERN, regional cooperation at light speed

Posted by in category: particle physics

Israel and its neighbors, including Iran and Pakistan, join forces to build the region’s first particle accelerator.

Read more