Toggle light / dark theme

A light-programmable, dynamic ultrasound wavefront

The notion of a phased array was initially articulated by Nobel Prize recipient K. F. Braun. Phased arrays have subsequently evolved into a formidable mechanism for wave manipulation. This assertion holds particularly true in the realm of ultrasound, wherein arrays composed of ultrasound-generating transducers are employed in various applications, including therapeutic ultrasound, tissue engineering, and particle manipulation.

Importantly, these applications—contrary to those aimed at imaging—demand high-intensity ultrasound, which complicates the electrical driving requirements, as each channel necessitates its own independently operational pulse circuitry and amplifier. Consequently, the majority of phased array transducers (PATs) are constrained to several hundred elements, thereby restricting the capability to shape intricate ultrasound beams.

To date, there exists no scalable methodology for the powering and control of phased array transducers.

The Universe’s Engine Is Changing: DESI Hints Dark Energy Isn’t What We Thought

DESI observations suggest black holes may generate dark energy by consuming stellar matter. The idea resolves puzzles about neutrino mass and cosmic expansion. These are remarkable times for probing some of the most profound mysteries in physics, made possible by advanced experiments and increasi

Here we glow: New organic liquid provides efficient phosphorescence

The nostalgic “glow-in-the-dark” stars that twinkle on the ceilings of childhood bedrooms operate on a phenomenon called phosphorescence. Here, a material absorbs energy and later releases it in the form of light. However, recent demand for softer, phosphorescent materials has presented researchers with a unique challenge, as producing organic liquids with efficient phosphorescence at room temperature is considered difficult.

Now, researchers at the University of Osaka have attempted to tackle this problem by producing an organic liquid that phosphoresces in the ambient environment. This discovery is published in Chemical Science.

Traditional materials that can phosphoresce at contain heavy metal atoms. These phosphors are used to create the colored electronic displays we utilize every day, such as those in our smartphones. Organic materials, which contain carbon and (similar to materials found in nature), are more environmentally friendly.

Magnifying Atomic Images

A new technique allows the imaging of an atomic system in which the interatomic spacing is smaller than the optical-resolution limit.

To gain in-depth understanding of quantum matter, researchers need to probe it at the microscopic level. Ultracold atoms—ensembles of atoms cooled to near absolute zero—offer an exceptionally clean and controllable platform for exploring collective quantum phenomena. Over the past two decades, researchers have sought to take in situ “snapshots” in which every single atom is individually resolved in position and, when needed, in spin. Recent advances have brought this vision to life and have significantly accelerated our understanding of collective quantum behaviors. Yet an important challenge remains: In a number of situations, the typical spacing between particles is smaller than the resolution limit of conventional optical imaging. Now Selim Jochim and his group at Heidelberg University in Germany have introduced a method to overcome this barrier by making the system “self-magnify” before imaging [1].

Explaining a quantum oddity with five atoms

Matter gets weird at the quantum scale, and among the oddities is the Efimov effect, a state in which the attractive forces between three or more atoms bind them together, even as they are excited to higher energy levels, while that same force is insufficient to bind two atoms.

At Purdue University, researchers have completed the immense quantum calculation required to represent the Efimov effect in five , adding to our fragmented picture of the most fundamental nature of matter.

The calculation, which applies across a broad range of physical problems—from a group of atoms being studied in a laser trap to the gases in a neutron star—contributes to our foundational understanding of matter and may lead to more efficient methods for confining atoms for study.

Quantum researchers observe real-time switching of magnet in heart of single atom

Researchers from Delft University of Technology in the Netherlands have been able to see the magnetic nucleus of an atom switch back and forth in real time. They read out the nuclear “spin” via the electrons in the same atom through the needle of a scanning tunneling microscope.

To their surprise, the spin remained stable for several seconds, offering prospects for enhanced control of the magnetic . The research, published in Nature Communications, is a step forward for quantum sensing at the atomic scale.

A scanning tunneling microscope (STM) consists of an atomically-sharp needle that can “feel” single atoms on a surface and make images with atomic resolution. Or to be precise, STM can only feel the that surround the atomic nucleus. Both the electrons and the nucleus in an atom are potentially small magnets.

Investigating an island of inversion: Physicists pinpoint boundary where nuclear shell model breaks down

An experiment carried out at CERN’s ISOLDE facility has determined the western shore of a small island of atomic nuclei, where conventional nuclear rules break down.

The was discovered over a century ago, yet many questions remain about the force that keeps its constituent protons and neutrons together and the way in which these particles pack themselves together within it.

In the classic nuclear shell model, protons and neutrons arrange themselves in shells of increasing energy, and completely filled outer shells of protons or neutrons result in particularly stable “magic” nuclei. But the model only works for nuclei with the right mix of protons and neutrons. Get the wrong mix and the model breaks down.

Self-assembling magnetic microparticles mimic biological error correction

Everybody makes mistakes. Biology is no different. However, living organisms have certain error-correction mechanisms that enable their biomolecules to assemble and function despite the defective slough that is a natural byproduct of the process.

A Cornell-led collaboration has developed microscale that can mimic the ability of biological materials such as proteins and nucleic acids to self-assemble into complex structures, while also selectively reducing the parasitic waste that would otherwise clog up production.

This magnetic assembly platform could one day usher in a new class of self-building biomimetic devices and microscale machines.

Quantum ‘curvature’ warps electron flow, hinting at new electronics possibilities

How can data be processed at lightning speed, or electricity conducted without loss? To achieve this, scientists and industry alike are turning to quantum materials, governed by the laws of the infinitesimal. Designing such materials requires a detailed understanding of atomic phenomena, much of which remains unexplored.

A team from the University of Geneva (UNIGE), in collaboration with the University of Salerno and the CNR-SPIN Institute (Italy), has taken a major step forward by uncovering a hidden geometry—until now purely theoretical—that distorts the trajectories of electrons in much the same way gravity bends the path of light. The work, published in Science, opens new avenues for .

Future technologies depend on high-performance materials with unprecedented properties, rooted in quantum physics. At the heart of this revolution lies the study of matter at the microscopic scale—the very essence of . In the past century, exploring atoms, electrons and photons within materials gave rise to transistors and, ultimately, to modern computing.

/* */