Menu

Blog

Archive for the ‘particle physics’ category: Page 397

Feb 9, 2017

AI learns to solve quantum state of many particles at once

Posted by in categories: particle physics, quantum physics, robotics/AI

The same kind of artificial intelligence that beat a top human player at Go could help grapple with the astonishing complexity of large quantum systems.

Read more

Feb 9, 2017

Primitive Quantum Computing Helps Test Theoretical Physics

Posted by in categories: computing, particle physics, quantum physics

In Brief:

Physicists were able to simulate high-energy experimens thanks to this primitive quantum computer. Prediction of theoretical physics may soon be tested.

Our current computers are not capable of running simulations of high-energy physics experiments. However, quite recently, scientists were able to use a primitive quantum computer in the simulation of the spontaneous creation of particle-antiparticle pairs. This makes it easier for physicists to further investigate the fundamental particles. A research team published their findings in the journal, Nature.

Continue reading “Primitive Quantum Computing Helps Test Theoretical Physics” »

Feb 9, 2017

Fe doped Magnetic Nanodiamonds made

Posted by in categories: nanotechnology, particle physics

Nice write up on magnetic Nano diamonds (NDs)


Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing.

Read more

Feb 9, 2017

The Quantum World of Digital Physics: Can a Virtual Reality be Real?

Posted by in categories: particle physics, quantum physics, virtual reality

Playlist: Do We Live in a Simulated Reality?

The Quantum World of Digital Physics: Can a virtual reality be real?

Continue reading “The Quantum World of Digital Physics: Can a Virtual Reality be Real?” »

Feb 9, 2017

Bizarre new helium compound may rewrite science books

Posted by in categories: chemistry, education, particle physics, science

At school you may have been taught that helium was a noble gas because it was totally unreactive.

But, new research suggests it might not be as virtuous as we first thought.

Continue reading “Bizarre new helium compound may rewrite science books” »

Feb 8, 2017

Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles

Posted by in categories: nanotechnology, particle physics

Interesting read for those interested in inorganic protein (NP) states from a solid to a liquid as the research proves inorganic NPs are in a ‘glassy’ state while transitioning from a solid to a liquid form.


Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to ‘surface-melted’ inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a ‘glassy’ state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string -like atomic displacements, potential energy fluctuations and particle displacements with long range correlations (‘colored’ or ‘pink’ noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string -like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains.

Read more

Feb 8, 2017

MIT Scientists: Cosmos Aligns to Show “Einstein Out of Whack” With Quantum Reality (VIDEO)

Posted by in categories: particle physics, quantum physics

Nice read & video illustration.


Quantum entanglement may appear to be closer to science fiction than anything in our physical reality. But according to the laws of quantum mechanics — a branch of physics that describes the world at the scale of atoms and subatomic particles — quantum entanglement, which Einstein once skeptically viewed as “spooky action at a distance,” is, in fact, real.

Continue reading “MIT Scientists: Cosmos Aligns to Show ‘Einstein Out of Whack’ With Quantum Reality (VIDEO)” »

Feb 8, 2017

Experiment Reaffirms Quantum Weirdness

Posted by in categories: particle physics, quantum physics

Quantum’s natural selection explored.


There might be no getting around what Albert Einstein called “spooky action at a distance.” With an experiment described today in Physical Review Letters — a feat that involved harnessing starlight to control measurements of particles shot between buildings in Vienna — some of the world’s leading cosmologists and quantum physicists are closing the door on an intriguing alternative to “quantum entanglement.”

“Technically, this experiment is truly impressive,” said Nicolas Gisin, a quantum physicist at the University of Geneva who has studied this loophole around entanglement.

Continue reading “Experiment Reaffirms Quantum Weirdness” »

Feb 8, 2017

Measuring Time Without a Clock

Posted by in categories: particle physics, quantum physics

When light shines on certain materials, it causes them to emit electrons. This is called “photoemission” and it was discovered by Albert Einstein in 1905, winning him the Nobel Prize. But only in the last few years, with advancements in laser technology, have scientists been able to approach the incredibly short timescales of photoemission. Researchers at EPFL have now determined a delay of one billionth of one billionth of a second in photoemission by measuring the spin of photoemitted electrons without the need of ultrashort laser pulses. The discovery is published in Physical Review Letters.

Photoemission

Photoemission has proven to be an important phenomenon, forming a platform for cutting-edge spectroscopy techniques that allow scientists to study the properties of electrons in a solid. One such property is spin, an intrinsic quantum property of particles that makes them look like as if they were rotating around their axis. The degree to which this axis is aligned towards a particular direction is referred to as spin polarization, which is what gives some materials, like iron, magnetic properties.

Continue reading “Measuring Time Without a Clock” »

Feb 7, 2017

Quantum Entanglement May Be Key To Long Distance Space Travel – Ex Lockheed Exec Said It’s Already Happening

Posted by in categories: particle physics, quantum physics, space travel

Surprised it took this long for this article to surface.

Quantum and travel.

Continue reading “Quantum Entanglement May Be Key To Long Distance Space Travel – Ex Lockheed Exec Said It’s Already Happening” »