Menu

Blog

Archive for the ‘particle physics’ category: Page 394

Aug 21, 2019

For The First Time Ever, Scientists Have Made a Stable Ring of Pure Carbon

Posted by in category: particle physics

Carbon can be arranged in a number of configurations. When each of its atoms is bonded to three other carbon atoms, it’s relatively soft graphite. Add just one more bond and it becomes one of the hardest minerals known, diamond. Chuck 60 carbon atoms together in a soccerball shape and boom, buckyballs.

But a ring of carbon atoms, where each atom is bonded to just two others, and nothing else? That’s eluded scientists for 50 years. Their best attempts have resulted in a gaseous carbon ring that quickly dissipated.

So it’s a pretty big deal that a team of researchers, from Oxford University and IBM Research, has now created a stable carbon ring.

Aug 20, 2019

A New Experiment Narrows Potential Properties of Dark Energy Particle

Posted by in categories: cosmology, particle physics

An experiment in the United Kingdom has failed to find evidence of a particle meant to explain most of the universe’s mass. But the search isn’t over.

When cosmologists observe the way the universe expands, they find that present-day theories of matter can’t explain most of the universe’s energy. They call the unknown energy “dark energy,” and theorists have tried to explain it by proposing undiscovered particles and corresponding fields. Experiments have failed to find evidence of such particles, but in physics, that’s not necessarily a bad thing.

Aug 20, 2019

Team develops robust molecular propeller for unidirectional rotations

Posted by in categories: biological, particle physics

A team of scientists from Ohio University, Argonne National Laboratory, Universitié de Toulouse in France and Nara Institute of Science and Technology in Japan led by Ohio Professor of Physics Saw-Wai Hla and Prof. Gwenael Rapenne from Toulouse developed a molecular propeller that enables unidirectional rotations on a material surface when energized.

In nature, molecule propellers are vital in many biological applications ranging from the swimming bacteria to intracellular transport, but synthetic molecular propellers, like what has been developed, are able to operate in harsher environments and under a precise control. This new development is a multiple component molecular specially designed to operate on solid surfaces. This tiny propeller is composed of three components; a ratchet shape molecular gear as a base, a tri-blade propeller, and a ruthenium atom acting as an atomic ball bearing that connects the two. The size of the propeller is only about 2 nanometers (nm) wide and 1 nm tall.

“What is special about our propeller is its multi-component design that becomes chiral on the gold crystal surface, i.e. it forms right- or left-tilted gears,” said Hla. “This chirality dictates the rotational direction when energized.”

Aug 19, 2019

“Qutrit”: Complex quantum teleportation achieved for first time

Posted by in categories: computing, particle physics, quantum physics

Researchers from the Austrian Academy of Sciences and the University of Vienna have experimentally demonstrated what was previously only a theoretical possibility. Together with quantum physicists from the University of Science and Technology of China, they have succeeded in teleporting complex high-dimensional quantum states. The research teams report this international first in the journal “Physical Review Letters”.

In their study, the researchers teleported the quantum state of one photon (light particle) to another distant one. Previously, only two-level states (“qubits”) had been transmitted, i.e., information with values “0” or “1”. However, the scientists succeeded in teleporting a three-level state, a so-called “qutrit”. In quantum physics, unlike in classical computer science, “0” and “1” are not an ‘either/or’ – both simultaneously, or anything in between, is also possible. The Austrian-Chinese team has now demonstrated this in practice with a third possibility “2”.

Novel experimental method.

Aug 19, 2019

A classic quantum theorem may prove there are many parallel universes

Posted by in categories: cosmology, particle physics, quantum physics

By Leah Crane

Some ideas about the quantum world appear to suggest there are many versions of you spread out across many parallel universes. Now, two scientists have formulated a proof that attempts to show this is really true.

The proof involves a fundamental construct in quantum mechanics called Bell’s theorem. This theorem deals with situations where particles interact with each other, become entangled, and then go their separate ways. It is what’s called a “no-go theorem”, one designed to show that some assumption about how the world works is not true.

Aug 19, 2019

Quantum teleportation shows up in 3D for the first time

Posted by in categories: particle physics, quantum physics

For the first time, Chinese scientists have demonstrated the experiment of transferring quantum information in a 3D state.

Limited in a two-level state for a long time, the study paves the way to teleporting the complete quantum state of a particle, according to an article in American Physical Society a top peer-review journal.

According to Pan Jianwei, coauthor of the study known as the “father of quantum” in China, quantum teleportation is a new communication method to transfer quantum information – a particle’s quantum state in the micro-world.

Aug 19, 2019

‘Social networks’ could tease new particles out of collider data

Posted by in categories: innovation, particle physics

Physics World represents a key part of IOP Publishing’s mission to communicate world-class research and innovation to the widest possible audience. The website forms part of the Physics World portfolio, a collection of online, digital and print information services for the global scientific community.

Aug 19, 2019

All the States of Matter You Didn’t Know Existed

Posted by in categories: particle physics, space

Before scientists discovered the new state of matter last week, we were basically all used to just three states of matter. After all, during our daily lives we encounter some variety of solids, liquids and gases. Solids hold a definite shape without a container, liquids conform to the shape of their container, and gases not only conform to a container, but also expand to fill it.

And there’s variety amidst these three: A crystalline solid, for example, has all its atoms lined up in exactly the precise order in perfect symmetry, while a quasicrystal solid fills all its space without the tightly regulated structure. Liquid crystals, which make up the visual components of most electronic displays, have elements of both liquids and crystal structures, as anyone who has ever pushed the screen of their calculator can confirm.

Under standard conditions on Earth, solids, liquids and gasses are the vast majority of what a person will experience in life. But that doesn’t mean there’s not a whole lot more beneath the surface.

Aug 18, 2019

Chemists have created and imaged a new form of carbon

Posted by in category: particle physics

ONE RING Scientists have created a new form of carbon consisting of 18 atoms arranged in a ring, illustrated here with data from an atomic force microscope. Bonds between atoms are alternately longer and shorter, giving the ring nine sides.

Aug 18, 2019

Researchers build a heat shield just 10 atoms thick to protect electronic devices

Posted by in categories: computing, mobile phones, particle physics

Excess heat given off by smartphones, laptops and other electronic devices can be annoying, but beyond that it contributes to malfunctions and, in extreme cases, can even cause lithium batteries to explode.

To guard against such ills, engineers often insert glass, plastic or even layers of air as insulation to prevent heat-generating components like microprocessors from causing damage or discomforting users.

Now, Stanford researchers have shown that a few layers of atomically , stacked like sheets of paper atop hot spots, can provide the same insulation as a sheet of glass 100 times thicker. In the near term, thinner heat shields will enable engineers to make even more compact than those we have today, said Eric Pop, professor of electrical engineering and senior author of a paper published Aug. 16 in Science Advances.