Toggle light / dark theme

Researchers have developed a new method that can automatically produce clear images through murky water. The new technology could be useful for searching for drowning victims, documenting submerged archaeological artifacts and monitoring underwater farms.

Imaging clearly underwater is extremely challenging because the and the particles in it tend to scatter light. But, because scattered light is partially polarized, imaging using a camera that is sensitive to polarization can be used to suppress scattered light in underwater .

“Our new method overcomes the limitations of traditional polarimetric underwater imaging, laying the groundwork for taking this method out of the lab and into the field,” said research team leader Haofeng Hu from Tianjin University in China. “Unlike previous methods, there’s no requirement for the image to include a background area to estimate the backscattered light.”

Circa 2017

Livescience.com | By LIVESCIENCE


Sound has negative mass, and all around you it’s drifting up, up and away — albeit very slowly.

That’s the conclusion of a paper submitted on July 23 to the preprint journal arXiv, and it shatters the conventional understanding that researchers have long had of sound waves: as massless ripples that zip through matter, giving molecules a shove but ultimately balancing any forward or upward motion with an equal and opposite downward motion. That’s a straightforward model that will explain the behavior of sound in most circumstances, but it’s not quite true, the new paper argues. [The Mysterious Physics of 7 Everyday Things]

A phonon — a particle-like unit of vibration that can describe sound at very small scales — has a very slight negative mass, and that means sound waves travel upward ever so slightly, said Rafael Krichevsky, a graduate student in physics at Columbia University.

No Man’s Sky

Researchers have created what they say is the largest computer simulation of the universe, and have made the data available for anyone to download for free.

An international team associated with the Center for Computational Astrophysics created the virtual universe using ATERUI II, the world’s most powerful astronomical supercomputer, according to a press release by the organization. Dubbed Uchuu (the Japanese word for “outer space”), the simulation contains a staggering 2.1 trillion particles spanning 9.6 billion virtual light-years. That’s big. Real big.

Using a groundbreaking new technique at the National Institute of Standards and Technology (NIST), an international collaboration led by NIST researchers has revealed previously unrecognized properties of technologically crucial silicon crystals and uncovered new information about an important subatomic particle and a long-theorized fifth force of nature.

By aiming subatomic particles known as neutrons at silicon crystals and monitoring the outcome with exquisite sensitivity, the NIST scientists were able to obtain three extraordinary results: the first measurement of a key neutron property in 20 years using a unique method; the highest-precision measurements of the effects of heat-related vibrations in a silicon crystal; and limits on the strength of a possible “fifth force” beyond standard physics theories.

The researchers report their findings in the journal Science.

One of the many areas graphene promises to have transformative effects is in fortifying construction materials like concrete and asphalt. A first-of-a-kind trial now underway seeks to apply the wonder material’s impressive attributes to one of the UK’s major thoroughfares, by deploying it in a road resurfacing project along a stretch of the A1 motorway.

Made up of a single sheet of carbon atoms arranged in a honeycomb pattern, graphene offers incredible strength and flexibility, and by incorporating it into materials like asphalt scientists hope to develop road surfaces that last far longer, and therefore cost less to maintain.

Back in 2017 we looked at an interesting take on this from a pair of Italian companies that developed an asphalt material doped with a graphene additive to make it less likely to soften in the heat and crack in the cold under high loads. This product, known as Gipave, also incorporates plastic pellets and was recently rolled out along stretches of UK roads as part of trials to see how it can extend the lifespan of the surface.

Forget about online games that promise you a “whole world” to explore. An international team of researchers has generated an entire virtual universe, and made it freely available on the cloud to everyone.

Uchuu (meaning “outer space” in Japanese) is the largest and most realistic simulation of the to date. The Uchuu simulation consists of 2.1 trillion particles in a computational cube an unprecedented 9.63 billion light-years to a side. For comparison, that’s about three-quarters the distance between Earth and the most distant observed . Uchuu reveals the evolution of the universe on a level of both size and detail inconceivable until now.

Uchuu focuses on the large-scale structure of the universe: mysterious halos of dark matter that control not only the formation of galaxies, but also the fate of the entire universe itself. The scale of these structures ranges from the largest galaxy clusters down to the smallest galaxies. Individual stars and planets aren’t resolved, so don’t expect to find any alien civilizations in Uchuu. But one way that Uchuu wins big in comparison to other virtual worlds is the ; Uchuu simulates the evolution of matter over almost the entire 13.8 billion year history of the universe from the Big Bang to the present. That is over 30 times longer than the since animal life first crawled out of the seas on Earth.