Toggle light / dark theme

A group of researchers working with data from the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy, has shown that it is possible to measure solar neutrinos with both directional and energy sensitivity. Two teams within the group have written papers describing the work by the group—one of them has published their work in Physical Review D, the other in Physical Review Letters.

The Borexino detector was first proposed back in 1986 and its structure was completed in 2004. In May of 2007, it began providing researchers with data. Its purpose has been to measure neutrino fluxes in proton-proton chains. The detector, which is currently being dismantled, was made using 280 metric tons of radio-pure liquid scintillator which was shielded by a layer of water. Detections were made as scattered off electrons in the scintillator—the light that was emitted was picked up by sensors lining the tank.

For most of its existence, data from the Borexino detector was an excellent source of high-resolution sensitivity data down to low energy thresholds, but it offered little in the way of directional trajectories. In this new effort, the researchers found a way to use the data from the detector with data from another detector to provide trajectory information.

HB11 is approaching nuclear fusion from an entirely new angle, using high power, high precision lasers instead of hundred-million-degree temperatures to start the reaction. Its first demo has produced 10 times more fusion reactions than expected, and the company says it’s now “the only commercial entity to achieve fusion so far,” making it “the global frontrunner in the race to commercialize the holy grail of clean energy.”

We’ve covered Australian company HB11’s hydrogen-boron laser fusion innovations before in detail, but it’s worth briefly summarizing what makes this company so different from the rest of the field. In order to smash atoms together hard enough to make them fuse together and form a new element, you need to overcome the incredibly strong repulsive forces that push two positively-charged nuclei apart. It’s like throwing powerful magnets at each other in space, hoping to smash two north poles together instead of having them just dance out of each other’s way.

The Sun accomplishes this by having a huge amount of hydrogen atoms packed into a plasma that’s superheated to tens of millions of degrees at its core. Heat is a measure of kinetic energy – how fast a group of atoms or molecules are moving or vibrating. At these temperatures, the hydrogen atoms are moving so fast that they smack into each other and fuse, releasing the energy that warms our planet.

The secret sauce? An improved manufacturing process that eliminates corrosive carbon dioxide gas.


There’s a better way to build solid-state lithium batteries, scientists say. By studying the battery manufacturing process, researchers from the Massachusetts Institute of Technology and Upton, New York-based Brookhaven National Laboratory have eliminated a tiny (but crucial) contamination issue, which could cut down on the complexity in future battery designs.

Solid-state batteries are widely considered to be the next great thing in rechargeable battery design. With an energy capacity at least two times greater than traditional lithium-ion batteries with flammable liquid electrolytes, solid-state batteries are safer, as well as more efficient—a huge pair of selling points for electric consumer vehicles in particular.

So what’s stopping solid-state lithium batteries from fully revolutionizing the industry? There are two issues: conductivity, and instability where the materials join. The first is easy to explain: volatile liquid electrolytes allow electrons to move freely, which is more challenging within a solid material with less particle mobility.

The prospects for directly testing a theory of quantum gravity are poor, to put it mildly. To probe the ultra-tiny Planck scale, where quantum gravitational effects appear, you would need a particle accelerator as big as the Milky Way galaxy. Likewise, black holes hold singularities that are governed by quantum gravity, but no black holes are particularly close by — and even if they were, we could never hope to see what’s inside. Quantum gravity was also at work in the first moments of the Big Bang, but direct signals from that era are long gone, leaving us to decipher subtle clues that first appeared hundreds of thousands of years later.

But in a small lab just outside Palo Alto, the Stanford University professor Monika Schleier-Smith and her team are trying a different way to test quantum gravity, without black holes or galaxy-size particle accelerators. Physicists have been suggesting for over a decade that gravity — and even space-time itself — may emerge from a strange quantum connection called entanglement. Schleier-Smith and her collaborators are reverse-engineering the process. By engineering highly entangled quantum systems in a tabletop experiment, Schleier-Smith hopes to produce something that looks and acts like the warped space-time predicted by Albert Einstein’s theory of general relativity.

The Mu2e experiment at Fermilab will look for a never-before-seen subatomic phenomenon that, if observed, would transform our understanding of elementary particles: the direct conversion of a muon into an electron. An international collaboration of over 200 scientists is building the Mu2e precision particle detector that will hunt for new physics beyond the Standard Model.

A gas made of particles of light, or photons, becomes easier to compress the more you squash it. This strange property could prove useful in making highly sensitive sensors.

While gases are normally made from atoms or molecules, it is possible to create a gas of photons by trapping them with lasers. But a gas made this way doesn’t have a uniform density – researchers say it isn’t homogeneous, or pure – making it difficult to study properly.

Now Julian Schmitt at the University of Bonn, Germany, and his colleagues have made a homogeneous photon gas for the first time by trapping photons between two nanoscale mirrors.

The double-slit experiment is one of the most famous experiments in physics and definitely one of the weirdest. It demonstrates that matter and energy (such as light) can exhibit both wave and particle characteristics — known as the particle-wave duality of matter — depending on the scenario, according to the scientific communication site Interesting Engineering.

According to the University of Sussex, American physicist Richard Feynman referred to this paradox as the central mystery of quantum mechanics.

Transmutex is reinventing nuclear energy from first principles using a process that uses radioactive waste as a fuel source.


Transmutex, a Swiss company, states on its website that it is “reinventing nuclear energy from first principles” by using a process that uses radioactive waste as a fuel source.

Its transmitter is a particle accelerator that produces nuclear energy with fewer contaminants than any reactor on the market today. The technology represents a valuable tool in the transition to intermittent renewables by providing baseload energy-producing alternatives to fossil-fuel thermal power stations.

The particle accelerator rather than the radioactive fuel creates a controlled nuclear reaction. Turn off the particle beam and the reaction stops immediately. The technology is designed to use a wide range of nuclear fuels including the radioactive waste from existing reactors.

A team of researchers affiliated with multiple institutions in China and the U.S. has found that it is possible to track the sliding of grain boundaries in some metals at the atomic scale using an electron microscope and an automatic atom tracker. In their paper published in the journal Science, the group describes their study of platinum using their new technique and the discovery they made in doing so.

Scientists have been studying the properties of metals for many years. Learning more about how crystal grains in certain metals interact with one another has led to the development of new kinds of metals and applications for their use. In their recent effort, the researchers took a novel approach to studying the sliding that occurs between grains and in so doing have learned something new.

When crystalline metals are deformed, the grains that they are made of move against one another, and the way they move determines many of their properties, such as malleability. To learn more about what happens between grains in such metals during deformity, the researchers used two types of technologies: and automated atom-tracking.