Menu

Blog

Archive for the ‘particle physics’ category: Page 348

Apr 10, 2019

New algorithm optimizes quantum computing problem-solving

Posted by in categories: business, computing, information science, particle physics, quantum physics

Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.

Quantum computing takes advantage of the ability of subatomic particles to exist in more than one state at the same time. It is expected to take modern-day computing to the next level by enabling the processing of more information in less time.

The D-Wave annealer, developed by a Canadian company that claims it sells the world’s first commercially available quantum computers, employs the concepts of quantum physics to solve ‘combinatorial optimization .’ A typical example of this sort of problem asks the question: “Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each and returns to the original city?” Businesses and industries face a large range of similarly complex problems in which they want to find the optimal solution among many possible ones using the least amount of resources.

Continue reading “New algorithm optimizes quantum computing problem-solving” »

Apr 9, 2019

Scientists build a machine to generate quantum superposition of possible futures

Posted by in categories: computing, information science, particle physics, quantum physics

In the 2018 movie Avengers: Infinity War, a scene featured Dr. Strange looking into 14 million possible futures to search for a single timeline in which the heroes would be victorious. Perhaps he would have had an easier time with help from a quantum computer. A team of researchers from Nanyang Technological University, Singapore (NTU Singapore) and Griffith University in Australia have constructed a prototype quantum device that can generate all possible futures in a simultaneous quantum superposition.

“When we think about the future, we are confronted by a vast array of possibilities,” explains Assistant Professor Mile Gu of NTU Singapore, who led development of the algorithm that underpins the prototype “These possibilities grow exponentially as we go deeper into the future. For instance, even if we have only two possibilities to choose from each minute, in less than half an hour there are 14 million possible futures. In less than a day, the number exceeds the number of atoms in the universe.” What he and his research group realised, however, was that a quantum computer can examine all possible futures by placing them in a – similar to Schrödinger’s famous cat, which is simultaneously alive and dead.

To realise this scheme, they joined forces with the experimental group led by Professor Geoff Pryde at Griffith University. Together, the team implemented a specially devised photonic quantum information processor in which the potential future outcomes of a decision process are represented by the locations of photons – quantum of light. They then demonstrated that the state of the quantum device was a superposition of multiple potential futures, weighted by their probability of occurrence.

Continue reading “Scientists build a machine to generate quantum superposition of possible futures” »

Apr 9, 2019

Research team expands quantum network with successful long-distance entanglement experiment

Posted by in categories: computing, particle physics, quantum physics

Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory, Stony Brook University, and DOE’s Energy Sciences Network (ESnet) are collaborating on an experiment that puts U.S. quantum networking research on the international map. Researchers have built a quantum network testbed that connects several buildings on the Brookhaven Lab campus using unique portable quantum entanglement sources and an existing DOE ESnet communications fiber network—a significant step in building a large-scale quantum network that can transmit information over long distances.

“In , the physical properties of entangled particles remain associated, even when separated by vast distances. Thus, when measurements are performed on one side, it also affects the other,” said Kerstin Kleese van Dam, director of Brookhaven Lab’s Computational Science Initiative (CSI). “To date, this work has been successfully demonstrated with entangled photons separated by approximately 11 miles. This is one of the largest quantum entanglement distribution networks in the world, and the longest-distance entanglement experiment in the United States.”

This quantum networking testbed project includes staff from CSI and Brookhaven’s Instrumentation Division and Physics Department, as well as faculty and students from Stony Brook University. The project also is part of the Northeast Quantum Systems Center. One distinct aspect of the team’s work that sets it apart from other quantum networks being run in China and Europe—both long-committed to quantum information science pursuits—is that the entanglement sources are portable and can be easily mounted in standard data center computer server racks that are connected to regular fiber distribution panels.

Continue reading “Research team expands quantum network with successful long-distance entanglement experiment” »

Apr 8, 2019

Time-reversal violation may explain abundance of matter over antimatter, physicist says

Posted by in category: particle physics

Why does the observable universe contain virtually no antimatter? Particles of antimatter have the same mass but opposite electrical charge of their matter counterparts. Very small amounts of antimatter can be created in the laboratory. However, hardly any antimatter is observed elsewhere in the universe.

Physicists believe that there were equal amounts of matter and antimatter in the early history of the universe – so how did the antimatter vanish? A Michigan State University researcher is part of a team of researchers that examines these questions in an article recently published in Reviews of Modern Physics.

Jaideep Taggart Singh, MSU assistant professor of physics at the Facility for Rare Isotope Beams, or FRIB, studies atoms and molecules embedded in solids using lasers. Singh has a joint appointment in the MSU’s Department of Physics and Astronomy.

Continue reading “Time-reversal violation may explain abundance of matter over antimatter, physicist says” »

Apr 5, 2019

Sorry, graphene—borophene is the new wonder material that’s got everyone excited

Posted by in categories: chemistry, particle physics

Stronger and more flexible than graphene, a single-atom layer of boron could revolutionize sensors, batteries, and catalytic chemistry.

Read more

Apr 1, 2019

Physicists Just Detected a Very Odd Particle That Isn’t a Particle at All

Posted by in category: particle physics

It sounds like the start of a very bad physics riddle: I’m a particle that really isn’t; I vanish before I can even be detected, yet can be seen. I break your understanding of physics but don’t overhaul your knowledge. Who am I?

It’s an odderon, a particle that’s even more odd than its name suggests, and it may have recently been detected at the Large Hadron Collider, the most powerful atom smasher, where particles are zipped at near light speed around a 17-mile-long (27 kilometers) ring near Geneva in Switzerland.

Read more

Mar 31, 2019

World’s Largest Atom Smasher May Have Just Found Evidence for Why Our Universe Exists

Posted by in category: particle physics

Physicists have observed a difference in the decay of particles containing the charm quark and its antiparticle, perhaps helping to explain why matter exists at all.

Read more

Mar 31, 2019

A New Contender for the Theory of Everything

Posted by in categories: particle physics, quantum physics, space

The most popular contender over the past few decades has been string theory, and the related concepts of superstring theory and M-theory, in which particles are considered as tiny units of one-dimensional string. However, a lesser-known theory has also gained traction; loop quantum gravity (LQG), which attempts to solve the quantum gravity problem by focusing on the very fabric of spacetime, rather than the particles themselves.

In “Quantum Space,” the popular-science writer Jim Baggott lays out the basic principles of LQG for science enthusiasts. The book looks at how loop quantum gravity has emerged by following the work of two of its leading proponents, Carlo Rovelli and Lee Smolin, and assesses where the theory is now, and where it might be going.

Although the concepts are — not surprisingly — mind-boggling, Baggott asks deep questions about the nature of the universe, what space is actually composed of, and the existence of time itself. (The book covers a lot of challenging material, however, and some prior reading may help readers find their way.)

Read more

Mar 31, 2019

Quantum optical cooling of nanoparticles

Posted by in categories: nanotechnology, particle physics, quantum physics

When a particle is completely isolated from its environment, the laws of quantum physics start to play a crucial role. One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature. Researchers at the University of Vienna, the Austrian Academy of Sciences and the Massachusetts Institute of Technology (MIT) are now one step closer to reaching this goal by demonstrating a new method for cooling levitated nanoparticles. They now publish their results in the renowned journal Physical Review Letters.

Tightly focused can act as optical “tweezers” to trap and manipulate tiny objects, from glass to living cells. The development of this method has earned Arthur Ashkin the last year’s Nobel prize in physics. While most experiments thus far have been carried out in air or liquid, there is an increasing interest for using to trap objects in ultra-high vacuum: such isolated particles not only exhibit unprecedented sensing performance, but can also be used to study fundamental processes of nanoscopic heat engines, or phenomena involving large masses.

A key element in these research efforts is to obtain full control over the particle motion, ideally in a regime where the laws of quantum physics dominate its behavior. Previous attempts to achieve this, have either modulated the optical tweezer itself, or immersed the particle into additional light fields between highly reflecting mirror configurations, i.e. optical cavities.

Continue reading “Quantum optical cooling of nanoparticles” »

Mar 30, 2019

A single superconducting artificial atom senses solid-state spins

Posted by in categories: electronics, particle physics

An electron spin resonance spectrometer using an artificial atom (a superconducting flux qubit) is realized, featuring both high sensitivity (400 spins/√Hz) and high spatial resolution (0.05 pL).

Go to the profile of Hiraku Toida

Hiraku Toida

Continue reading “A single superconducting artificial atom senses solid-state spins” »