A new 2D memory chip suggests we should focus on ever-thinner chips instead of smaller transistors to kickstart Moore’s law.
So the weak force doesn’t play by the normal rules — and, in fact, it breaks one of the biggest rules of all.
All of the other forces of nature obey something called parity symmetry. If you run a physics experiment and compare it with the same experiment in the mirror, the results should come out the same.
Imagine industrial processes that make materials or chemical compounds faster, cheaper, and with fewer steps than ever before. Imagine processing information in your laptop in seconds instead of minutes or a supercomputer that learns and adapts as efficiently as the human brain. These possibilities all hinge on the same thing: how electrons interact in matter.
A team of Auburn University scientists has now designed a new class of materials that gives scientists unprecedented control over these tiny particles. Their study, published in ACS Materials Letters, introduces the tunable coupling between isolated-metal molecular complexes, known as solvated electron precursors, where electrons aren’t locked to atoms but instead float freely in open spaces.
From their key role in energy transfer, bonding, and conductivity, electrons are the lifeblood of chemical synthesis and modern technology. In chemical processes, electrons drive redox reactions, enable bond formation, and are critical in catalysis. In technological applications, manipulating the flow and interactions between electrons determines the operation of electronic devices, AI algorithms, photovoltaic applications, and even quantum computing. In most materials, electrons are bound tightly to atoms, which limits how they can be used. But in electrides, electrons roam freely, creating entirely new possibilities.
Scientists are exploring many ways to use light rather than heat to drive chemical reactions more efficiently, which could significantly reduce waste, energy consumption, and reliance on nonrenewable resources.
A team of chemistry researchers at the University of Illinois Urbana-Champaign has been studying plasmon-induced resonance energy transfer (PIRET)—conveying energy from a tiny metal particle to a semiconductor or molecule without the need for any physical contact.
“If you’d like to do chemistry with light, then your first step would be to use that light as efficiently as possible,” said Illinois chemistry professor Christy Landes, who co-leads the research team exploring this innovative research. “And one of the most efficient ways to use light is to use plasmonic metal nanoparticles, because they are better than just about any other material at absorbing and scattering light.”
Could black holes help explain high-energy cosmic radiation?
Scientists may have finally uncovered the mystery behind ultra-high-energy cosmic rays — the most powerful particles known in the universe. A team from NTNU suggests that colossal winds from supermassive black holes could be accelerating these particles to unimaginable speeds. These winds, moving at half the speed of light, might not only shape entire galaxies but also fling atomic nuclei across the cosmos with incredible energy.
The universe is full of different types of radiation and particles that can be observed here on Earth. This includes photons across the entire range of the electromagnetic spectrum, from the lowest radio frequencies all the way to the highest-energy gamma rays. It also includes other particles such as neutrinos and cosmic rays, which race through the universe at close to the speed of light.
Using 11 years of magnetic field measurements from the European Space Agency’s Swarm satellite constellation, scientists have discovered that the weak region in Earth’s magnetic field over the South Atlantic—known as the South Atlantic Anomaly—has expanded by an area nearly half the size of continental Europe since 2014.
Earth’s magnetic field is vital to life on our planet. It is a complex and dynamic force that protects us from cosmic radiation and charged particles from the sun.
It is largely generated by a global ocean of molten, swirling liquid iron that makes up the outer core around 3,000 km beneath our feet. Acting like a spinning conductor in a bicycle dynamo, it creates electrical currents, which in turn, generate our continuously changing electromagnetic field —but in reality the processes that generate the field are far more complex.
Light is fast, but travels in long wavelengths and interacts weakly with itself. The particles that make up matter are tiny and interact strongly with each other, but move slowly. Together, the two can combine into a hybrid quasiparticle called a polariton that is part light, part matter.
In a new paper published today in Chem, a team of Columbia chemists has identified how to combine matter and light to get the best of both worlds: polaritons with strong interactions and fast, wavelike flow. These distinctive behaviors can be used to power optical computers and other light-based quantum devices.
“We’ve written a playbook for the ‘perfect’ polariton that will guide our research, and we hope, that of the entire field working on strong light-matter interactions,” said Milan Delor, associate professor of chemistry at Columbia.
Changing interactions between the smallest particles at the touch of a button: Quantum researchers at RPTU have developed a new tool that makes this possible. The new approach—a temporally oscillating magnetic field—has the potential to significantly expand fundamental knowledge in the field of quantum physics. It also opens completely new perspectives on the development of new materials.
Computer chips, imaging techniques such as magnetic resonance imaging, laser printers, transistors, and navigation systems: many milestones in our modern everyday world would not have been possible without the discoveries of quantum physics. What is remarkable is that it was only about a hundred years ago that physicists discovered that the world at the smallest scales cannot be explained by the laws of classical physics.
Atoms and their components, protons, neutrons, and electrons—but also light particles—sometimes exhibit physical behaviors that are unknown in the macroscopic world. To this day, the quantum world therefore holds unclear and surprising phenomena that—once understood and controllable—could revolutionize future technologies.