Menu

Blog

Archive for the ‘particle physics’ category: Page 298

Jan 20, 2022

Large Hadron Collider: New Insight Into the Internal Structure of the Proton

Posted by in category: particle physics

While the Large Hadron Collider (LHC) is well known for smashing protons together, it is actually the quarks and gluons inside the protons – collectively known as partons – that are really interacting. Thus, in order to predict the rate of a process occurring in the LHC – such as the production of a Higgs boson or a yet-unknown particle – physicists have to understand how partons behave within the proton. This behavior is described in Parton Distribution Functions (PDFs), which describe what fraction of a proton’s momentum is taken by its constituent quarks and gluons.

Knowledge of these PDFs has traditionally come from lepton–proton colliders, such as HERA at DESY. These machines use point-like particles, such as electrons, to directly probe the partons within the proton. Their research revealed that, in addition to the well-known up and down valence quarks that are inside a proton, there is also a sea of quark–antiquark pairs in the proton. This sea is theoretically made of all types of quarks, bound together by gluons. Now, studies of the LHC’s proton–proton collisions are providing a detailed look into PDFs, in particular the proton’s gluon and quark-type composition.

Jan 19, 2022

Quantum startups Pasqal and Qu&Co merge and promise 1,000 qubits by 2023

Posted by in categories: computing, information science, particle physics, quantum physics

Hardware company uses neutral atom design while algorithm experts integrate quantum algorithms into existing software platforms.

Pasqal is combining its neutral atom-based hardware with Qu&Co’s algorithm portfolio to launch a combined quantum computing company based in Paris with operations in seven countries. The companies announced the merger Tuesday, Jan. 11.

Jan 19, 2022

Astronomers Want to Build a Neutrino Telescope. Using the Pacific Ocean?

Posted by in categories: cosmology, particle physics

Neutrino detectors are about to get a lot bigger.

One of the most mysterious particles in the universe are neutrinos, with only dark matter out-baffling scientists as a more puzzling phenomenon.

Continue reading “Astronomers Want to Build a Neutrino Telescope. Using the Pacific Ocean?” »

Jan 19, 2022

Antimatter Mystery Continues To Perplex Scientists

Posted by in category: particle physics

Scientist studying the reason why no antimatter is observed in the universe have uncovered a mystery in their data. While some particles decay in a manner that favors matter, other particles do not. Current theory cannot explain this discrepancy.

Jan 18, 2022

Astronomers propose building a neutrino telescope — out of the Pacific Ocean

Posted by in categories: particle physics, space

Meet the ambitious P-ONE proposal.


The P-ONE design currently involves seven 10-string clusters, with each string hosting 20 optical elements. That s a grand total of 1,400 photodetectors floating around an area of the Pacific several miles across, providing much more coverage than IceCube.

Once it’s up and running, you just need to wait. Even neutrinos will strike some ocean water and give off a little flash, and the detectors will trace it.

Continue reading “Astronomers propose building a neutrino telescope — out of the Pacific Ocean” »

Jan 17, 2022

Building a silicon quantum computer chip atom

Posted by in categories: computing, engineering, particle physics, quantum physics

A University of Melbourne-led team has perfected a technique for embedding single atoms in a silicon wafer one-by-one. Their technology offers the potential to make quantum computers using the same methods that have given us cheap and reliable conventional devices containing billions of transistors.

“We could ‘hear’ the electronic click as each atom dropped into one of 10,000 sites in our prototype device. Our vision is to use this technique to build a very, very large-scale quantum device,” says Professor David Jamieson of The University of Melbourne, lead author of the Advanced Materials paper describing the process.

Continue reading “Building a silicon quantum computer chip atom” »

Jan 17, 2022

Toward superior nanoscale sensing and imaging with optimized diamond probes

Posted by in categories: biological, nanotechnology, particle physics, quantum physics

From the discovery of microorganisms in the field of biology to imaging atoms in the field of physics, microscopic imaging has improved our understanding of the world and has been responsible for many scientific advances. Now, with the advent of spintronics and miniature magnetic devices, there is a growing need for imaging at nanometer scales to detect quantum properties of matter, such as electron spins, magnetic domain structure in ferromagnets, and magnetic vortices in superconductors.

Typically, this is done by complementing standard microscopy techniques, such as scanning tunneling microscopy and (AFM), with magnetic sensors to create “scanning magnetometry probes” that can achieve nanoscale imaging and sensing. However, these probes often require ultrahigh vacuum conditions, extremely low temperatures, and are limited in spatial resolution by the probe size.

In this regard, nitrogen-vacancy (NV) centers in diamond (defects in diamond structure formed by nitrogen atoms adjacent to “vacancies” created by missing atoms) have gained significant interest. The NV pair, it turns out, can be combined with AFM to accomplish local magnetic imaging and can operate at room temperature and pressures. However, fabricating these probes involve complex techniques that do not allow for much control over the probe shape and size.

Jan 15, 2022

Shrinking qubits for quantum computing with atom-thin materials

Posted by in categories: computing, engineering, particle physics, quantum physics

For quantum computers to surpass their classical counterparts in speed and capacity, their qubits—which are superconducting circuits that can exist in an infinite combination of binary states—need to be on the same wavelength. Achieving this, however, has come at the cost of size. Whereas the transistors used in classical computers have been shrunk down to nanometer scales, superconducting qubits these days are still measured in millimeters—one millimeter is one million nanometers.

Combine qubits together into larger and larger circuit chips, and you end up with, relatively speaking, a big physical footprint, which means quantum computers take up a lot of physical space. These are not yet devices we can carry in our backpacks or wear on our wrists.

To shrink qubits down while maintaining their performance, the field needs a new way to build the capacitors that store the energy that “powers” the qubits. In collaboration with Raytheon BBN Technologies, Wang Fong-Jen Professor James Hone’s lab at Columbia Engineering recently demonstrated a superconducting qubit built with 2D materials that’s a fraction of previous sizes.

Jan 15, 2022

Quantum computing startup with executive office in Cary raises $15M, launches first-generation computer

Posted by in categories: computing, particle physics, quantum physics

As IBM, Honeywell, Amazon, and others ramp up quantum computing programs, another quantum computing startup has opened an executive office in the Triangle — and Atom Computing launched its first-generation quantum computer today, as well.

Jan 15, 2022

Advances in theoretical modeling of atomic nuclei

Posted by in category: particle physics

The atomic nucleus is a tough nut to crack. The strong interaction between the protons and neutrons that make it up depends on many quantities, and these particles, collectively known as nucleons, are subject to not only two-body forces but also three-body ones. These and other features make the theoretical modeling of atomic nuclei a challenging endeavor.