Menu

Blog

Archive for the ‘particle physics’ category: Page 272

Jul 2, 2022

The Milky Way may have two supermassive black holes

Posted by in categories: cosmology, particle physics

Do supermassive black holes have friends? The nature of galaxy formation suggests that the answer is yes, and in fact, pairs of supermassive black holes should be common in the universe.

I am an astrophysicist and am interested in a wide range of theoretical problems in astrophysics, from the formation of the very first galaxies to the gravitational interactions of black holes, stars and even planets. Black holes are intriguing systems, and supermassive black holes and the dense stellar environments that surround them represent one of the most extreme places in our universe.

The supermassive black hole that lurks at the center of our galaxy, called Sgr A*, has a mass of about 4 million times that of our Sun. A black hole is a place in space where gravity is so strong that neither particles or light can escape from it. Surrounding Sgr A* is a dense cluster of stars. Precise measurements of the orbits of these stars allowed astronomers to confirm the existence of this supermassive black hole and to measure its mass. For more than 20 years, scientists have been monitoring the orbits of these stars around the supermassive black hole. Based on what we’ve seen, my colleagues and I show that if there is a friend there, it might be a second black hole nearby that is at least 100,000 times the mass of the Sun.

Jul 2, 2022

Mind-Bending Physics Reveals Electrons Travel in “Lanes” While Moving Along Quantum Wires

Posted by in categories: particle physics, quantum physics

A new study from the University of Cambridge reveals that electrons can simultaneously possess different energy levels.


Electrons, one of the most fundamental components of our universe, still hold a few secrets that puzzle modern scientists. Since the 1920s, physicists have worked to try and unravel the workings of these negatively charged particles, and how they behave in different situations. Now, research conducted at the University of Cambridge has shed new light on a pair of key factors–the spins and charges of electrons–revealing even more about their unique behavior.

Background: Spin and Charge

Continue reading “Mind-Bending Physics Reveals Electrons Travel in ‘Lanes’ While Moving Along Quantum Wires” »

Jul 1, 2022

Objective Reality May Not Exist at All, Quantum Physicists Say

Posted by in categories: neuroscience, particle physics, quantum physics

If objective reality doesn’t exist, where does that leave us? Does reality emerge into physicality directly from nothing, or could it be that conceptual reality is just as real as the physical universe? If that is the case, then physical matter is just a product of conception, and consciousness is its backdrop.


Does reality exist, or does it take shape when an observer measures it? Akin to the age-old conundrum of whether a tree makes a sound if it falls in a forest with no one around to hear it, the above question remains one of the most tantalizing in the field of quantum mechanics, the branch of science dealing with the behavior of subatomic particles on the microscopic level.

In a field where intriguing, almost mysterious phenomena like “quantum superposition” prevail—a situation where one particle can be in two or even “all” possible places at the same time—some experts say reality exists outside of your own awareness, and there’s nothing you can do to change it. Others insist “quantum reality” might be some form of Play-Doh you mold into different shapes with your own actions. Now, scientists from the Federal University of ABC (UFABC) in the São Paulo metropolitan area in Brazil are adding fuel to the suggestion that reality might be “in the eye of the observer.”

Continue reading “Objective Reality May Not Exist at All, Quantum Physicists Say” »

Jul 1, 2022

What If We Built a Star-Sized Computer? | Unveiled

Posted by in categories: computing, neuroscience, particle physics

What if we built a Matrioshka Brain? In this video, Unveiled asks what would happen if we built a computer AROUND A STAR? This is one of the most incredible megastructures we’ve ever even contemplated… but what would the universe be like if it was home to these things? And how would we possibly keep control?

This is Unveiled, giving you incredible answers to extraordinary questions!

Continue reading “What If We Built a Star-Sized Computer? | Unveiled” »

Jul 1, 2022

Lab denies opening portals into parallel universes despite everyone thinking so

Posted by in categories: cosmology, government, nuclear energy, particle physics

A lab in Tennesee that does research in neutron, nuclear and clean energy had to debunk the myth that they were somehow attempting to open portals to other dimensions. Though if I ever learned anything from popular science fiction, if a research lab says they aren’t opening portals to parallel universes, my instinct tells me that they are totally opening portals to other dimensions. So you can imagine why folks would be skeptical.

Research scientist Leah Broussard explains in the video above that the experiments they are doing at the Oak Ridge National Laboratory (which is managed by the US Department of Energy) aren’t exactly about building portals to other dimensions. Instead, they involved “looking for new ways that matter we know and understand, that makes up our universe, might interact with the dark matter that makes up the majority of our universe, which we don’t understand.”

Broussard also explains when a particle physicist says portal, they mean it in a figurative sense. All this talk of parallel universes came when her research was released and people started making connections to the Netflix show, Stranger Things. A show that, coincidentally, features kids stumbling across a shady government agency opening portals to other dimensions full of monsters, in the ’80s.

Jul 1, 2022

Michelle Simmons: quantum machines at the atomic limit | The Royal Society

Posted by in categories: biological, nanotechnology, particle physics, quantum physics

Join Professor Michelle Simmons to find out how scientists are delivering Richard Feynman’s dream of designing materials at the atomic limit for quantum machines. 🔔Subscribe to our channel for exciting science videos and live events, many hosted by Brian Cox, our Professor for Public Engagement: https://bit.ly/3fQIFXB

#Physics #Quantum #RichardFeynman.

Continue reading “Michelle Simmons: quantum machines at the atomic limit | The Royal Society” »

Jul 1, 2022

Defects Control Silica’s Viscosity

Posted by in category: particle physics

The quirky temperature dependence of liquid silica’s viscosity comes from the liquid equivalent of crystal defects, according to new simulations.


Using radioactive tritium, scientists improve laboratory constraints on the overdensity signal of cosmic relic neutrinos by a factor of 100, an advance that should improve the chances of spotting this elusive particle.

Jul 1, 2022

A Step Closer to Detecting Ancient Neutrinos

Posted by in category: particle physics

Using radioactive tritium, scientists improve laboratory constraints on the overdensity signal of cosmic relic neutrinos by a factor of 100, an advance that should improve the chances of spotting this elusive particle.

Jul 1, 2022

Manipulating Objects Using Air Bubbles and Sound Waves

Posted by in categories: bioengineering, biological, particle physics, robotics/AI

Centimeter-scale objects in liquid can be manipulated using the mutual attraction of two arrays of air bubbles in the presence of sound waves.

Assembling small components into structures is a fiddly business often encountered in manufacturing, robotics, and bioengineering. Some existing approaches use magnetic, electrical, or optical forces to move and position objects without physical contact. Now a team has shown that acoustic waves can create attractive forces between centimeter-scale objects in water, enabling one such object to be accurately positioned above another [1]. The scheme uses arrays of tiny, vibrating air bubbles that provide the attractive force. This acoustic method requires only simple equipment and could provide a cheap, versatile, and gentle alternative technique for object manipulation.

Researchers are developing techniques that use acoustic waves to position objects such as colloidal particles or biological cells. Attractive forces are produced by the scattering of sound waves from the objects being manipulated. One limitation of this approach, however, is that positioning is more accurate with waves of higher frequency (and thus smaller wavelength), but higher frequencies are also more strongly absorbed and attenuated by many materials.

Jul 1, 2022

The Size of an Atom: How Scientists First Guessed It’s About Quantum Physics

Posted by in categories: particle physics, quantum physics

Atoms are all about a tenth of a billionth of a meter wide (give or take a factor of 2). What determines an atom’s size? This was on the minds of scientists at the turn of the 20th century. The particle called the “electron” had been discovered, but the rest of an atom was a mystery. Today we’ll look at how scientists realized that quantum physics, an idea which was still very new, plays a central role. (They did this using one of their favorite strategies: “dimensional analysis”, which I described in a recent post.)

Since atoms are electrically neutral, the small and negatively charged electrons in an atom had to be accompanied by something with the same amount of positive charge — what we now call “the nucleus”. Among many imagined visions for what atoms might be like was the 1904 model of J.J. Thompson, in which he imagined the electrons are embedded within a positively-charged sphere the size of the whole atom.

But Thompson’s former student Ernest Rutherford gradually disproved this model in 1909–1911, through experiments that showed the nucleus is tens of thousands of times smaller (in radius) than an atom, despite having most of the atom’s mass.