Trapping ultracold atoms with laser light let researchers magnify and then image the wave functions of atoms that were previously too close together to look like anything but a blob
In 2023, physicist Xiaodong Xu at the University of Washington —working with researchers from Cornell and Shanghai Jiao Tong University —found that twisting atom-thin layers of molybdenum ditelluride into a special pattern called a moiré lattice could produce the fractional quantum anomalous Hall effect without magnets. This was a huge leap, because magnets can disrupt superconducting materials used in quantum technology.
Xu’s team discovered two such magnet-free fractional states. That alone was remarkable. But Zhu and his colleagues suspected there were more waiting to be found. The secret lies in the moiré pattern. When the layers are slightly rotated relative to each other, they form a honeycomb-like grid at the atomic scale.
This structure changes the way electrons move, encouraging them to team up in unusual ways that create fractional charges. In other words, the twist turns the material into a playground for exotic quantum phases.
A Japanese research team has rewritten the rules of diamond creation, turning carbon molecules into flawless diamond nanoparticles without the furnace-like heat or crushing pressure usually required. Led by the University of Tokyo, this breakthrough uses an electron beam to unlock what was once thought impossible—and it could change how scientists image and analyze matter forever.
Published on September 4 in the journal Science, this pioneering work could revolutionize material science and open new doors in technology. But beyond the technical marvel lies a profound shift in understanding how organic molecules react under electron beams.
China may soon lead the global race to mine minerals from the ocean floor
Hydrogen fuel cell vehicles have long been hailed as the future of clean mobility: cars that emit nothing but water while delivering high efficiency and power density. Yet a stubborn obstacle remains. The heart of the fuel cell, the platinum-based catalyst, is both expensive and prone to degradation. Over time, the catalyst deteriorates during operation, forcing frequent replacements and keeping hydrogen vehicles costly.
Understanding why and how these catalysts degrade at the atomic level is a longstanding challenge in catalysis research. Without this knowledge, designing truly durable and affordable fuel cells for mass adoption remains out of reach.
Now, a team led by Professor Yongsoo Yang of the Department of Physics at KAIST (Korea Advanced Institute of Science and Technology), in collaboration with Professor Eun-Ae Cho of KAIST’s Department of Materials Science and Engineering, researchers at Stanford University and the Lawrence Berkeley National Laboratory, has successfully tracked the three-dimensional change of individual atoms inside fuel cell catalysts during thousands of operating cycles. The results provide unprecedented insight into the atomic-scale degradation mechanisms of platinum-nickel (PtNi) catalysts, and demonstrate how gallium (Ga) doping dramatically improves both their performance and durability.
Neutrinos are one of the most enigmatic particles in the standard model. The main reason is that they’re so hard to detect. Despite the fact that 400 trillion of them created in the sun are passing through a person’s body every second, they rarely interact with normal matter, making understanding anything about them difficult. To help solve their mysteries, a new neutrino detector in China recently started collecting data, and hopes to provide insight on between forty and sixty neutrinos a day for the next ten years.
The detector, known as the Jiangmen Underground Neutrino Observatory, or JUNO, is located in between two huge nuclear plants at Yangjian and Taishan. Both of those fission plants create their own artificial neutrinos in addition to the ones created by the sun, meaning the general area should be awash with barely interacting particles.
That’s despite the fact that, like most neutrino detectors, it’s located underground. 700 meters underground, in fact. The physical bulk of Earth’s crust is meant to block most other particles, like muons, from getting to it, and at other installations, like IceCube, it does a pretty good job.
An international collaboration has developed a new diagnostic technique for measuring ultra-short particle beams at STFC’s Central Laser Facility. This collaboration is led by the University of Michigan and Queen’s University Belfast. The research addresses a key challenge in developing compact alternatives to kilometer-long particle accelerators.
Current X-ray free-electron lasers (XFELs), which produce laser-like X-rays for imaging at the viral scale, require facilities stretching for kilometers. These installations demand substantial resources and space that many institutions cannot accommodate.
Laser-wakefield acceleration technology offers the potential to create similar capabilities in devices small enough to fit on a laboratory bench. This approach works by focusing an intense, ultra-short laser pulse into plasma, matter where electrons and ions are separated.
Physicists at CU Boulder have, for the first time, used liquid crystals to create a new kind of time crystal, a curious phase of matter in which particles are in constant motion.
CMS scientists study the first-ever oxygen-oxygen collisions at the LHC, and observe signs of quarks and gluons losing energy when they travel through quark-gluon plasma – a state that existed just after the Big Bang.
When heavy ions such as lead (Pb) collide at nearly the speed of light inside the Large Hadron Collider (LHC), extreme conditions are created that can “melt” ordinary nuclear matter into a new state called the quark-gluon plasma (QGP). This hot and dense medium is believed to resemble the universe just microseconds after the Big Bang, when quarks and gluons – the fundamental building blocks of protons and neutrons – moved freely.
Physicists study the QGP medium by looking at how fast-moving quarks and gluons – collectively called partons – behave as they pass through it. Fast moving partons form sprays of particles, which can be seen as “jets” in particle detectors. In collisions of very small systems, such as proton-proton collisions, the observed jets are seen to retain the full energy or the original partons. In contrast, in heavy-ion collisions, the presence of the QGP medium leads to a significant loss of energy.
The concept of quantum entanglement is emblematic of the gap between classical and quantum physics. Referring to a situation in which it is impossible to describe the physics of each photon separately, this key characteristic of quantum mechanics defies the classical expectation that each particle should have a reality of its own, which gravely concerned Einstein.
Understanding the potential of this concept is essential for the realization of powerful new quantum technologies.
Developing such technologies will require the ability to freely generate a multi–photon quantum entangled state, and then to efficiently identify what kind of entangled state is present. However, when performing conventional quantum tomography, a method commonly used for state estimation, the number of measurements required grows exponentially with the number of photons, posing a significant data collection problem.
The world of quantum physics is already mysterious, but what happens when that strange realm of subatomic particles is put under immense pressure? Observing quantum effects under pressure has proven difficult for a simple reason: Designing sensors that can withstand extreme forces is challenging.
In a significant advance, a team led by physicists at WashU has created quantum sensors in an unbreakable sheet of crystallized boron nitride. The sensors can measure stress and magnetism in materials under pressure that exceeds 30,000 times the pressure of the atmosphere.
“We’re the first ones to develop this sort of high-pressure sensor,” said Chong Zu, an assistant professor of physics in Arts & Sciences and a member of Washington University in St. Louis’ Center for Quantum Leaps. “It could have a wide range of applications in fields ranging from quantum technology, material science, to astronomy and geology.”