Toggle light / dark theme

The sun, the essential engine that sustains life on Earth, generates its tremendous energy through the process of nuclear fusion. At the same time, it releases a continuous stream of neutrinos—particles that serve as messengers of its internal dynamics. Although modern neutrino detectors unveil the sun’s present behavior, significant questions linger about its stability over periods of millions of years—a timeframe that spans human evolution and significant climate changes.

Finding answers to this is the goal of the LORandite EXperiment (LOREX) that requires a precise knowledge of the solar neutrino cross section on thallium. This information has now been provided by an international collaboration of scientists using the unique facilities at GSI/FAIR’s Experimental Storage Ring ESR in Darmstadt to obtain an essential measurement that will help to understand the long-term stability of the sun. The results of the measurements have been published in the journal Physical Review Letters.

LOREX is the only long-time geochemical solar neutrino experiment still actively pursued. Proposed in the 1980s, it aims to measure solar neutrino flux averaged over a remarkable four million years, corresponding to the geological age of the lorandite ore.

Three distinct topological degrees of freedom are used to define all topological spin textures based on out-of-plane and in-plane spin configurations: the topological charge, representing the number of times the magnetization vector m wraps around the unit sphere; the vorticity, which quantifies the angular integration of the magnetic moment along the circumferential direction of a domain wall; and the helicity, defining the swirling direction of in-plane magnetization.

Electrical manipulation of these three degrees of freedom has garnered significant attention due to their potential applications in future spintronic devices. Among these, the helicity of a magnetic skyrmion—a critical topological property—is typically determined by the Dzyaloshinskii-Moriya interaction (DMI). However, controlling skyrmion helicity remains a formidable challenge.

A team of scientists led by Professor Yan Zhou from The Chinese University of Hong Kong, Shenzhen, and Professor Senfu Zhang from Lanzhou University successfully demonstrated a controllable helicity switching of skyrmions using spin-orbit torque, enhanced by thermal effects.

Assuming dark matter exists, its interactions with ordinary matter are so subtle that even the most sensitive instruments cannot detect them. In a new study, Northwestern University physicists now introduce a highly sensitive new tool, which amplifies incredibly faint signals by 1,000 times—a 50-fold improvement over what was previously possible.

Called an atom interferometer, the incredibly precise tool manipulates atoms with light to measure exceptionally tiny forces. But, unlike other atom interferometers, which are limited by the imperfections in the light itself, the new tool self-corrects for these imperfections to reach record-breaking levels of precision.

By boosting imperceptible signals to perceptible levels, the technological advance could help scientists who are hunting for ultra-weak forces emitted from a variety of evasive phenomena, including , and in unexplored frequency ranges.

Scientists have made a groundbreaking discovery of a new extinct species of coelacanth, thanks to an unexpected tool: a particle accelerator. This cutting-edge technology allowed scientists to analyze 240-million-year-old fossils in unprecedented detail. The new species sheds light on ancient fish behavior and anatomy in ways never before possible.

Here on planet Earth, as well as in most locations in the Universe, everything we observe and interact with is made up of atoms. Atoms come in roughly 90 different naturally occurring species, where all atoms of the same species share similar physical and chemical properties, but differ tremendously from one species to another. Once thought to be indivisible units of matter, we now know that atoms themselves have an internal structure, with a tiny, positively charged, massive nucleus consisting of protons and neutrons surrounded by negatively charged, much less massive electrons. We’ve measured the physical sizes of these subatomic constituents exquisitely well, and one fact stands out: the size of atoms, at around 10-10 meters apiece, are much, much larger than the constituent parts that compose them.

Protons and neutrons, which compose the atom’s nucleus, are roughly a factor of 100,000 smaller in length, with a typical size of only around 10-15 meters. Electrons are even smaller, and are assumed to be point-like particles in the sense that they exhibit no measurable size at all, with experiments constraining them to be no larger than 10-19 meters across. Somehow, protons, neutrons, and electrons combine together to create atoms, which occupy much greater volumes of space than their components added together. It’s a mysterious fact that atoms, which must be mostly empty space in this regard, are still impenetrable to one another, leading to enormous collections of atoms that make up the solid objects we’re familiar with in our macroscopic world.

So how does this happen: that atoms, which are mostly empty space, create solid objects that cannot be penetrated by other solid objects, which are also made of atoms that are mostly empty space? It’s a remarkable fact of existence, but one that requires quantum physics to explain.

A nanotechnology material called graphene has captured attention worldwide, with many scientists dubbing it the latest “wonder material” with the potential to have an enormous human impact.

Graphene’s structure, made of carbon atoms arranged in a thin sheet, has properties that make it a strong contender to revolutionize many industries.

It’s often regarded as the thinnest and strongest material discovered so far, showing flexibility that few other materials can match. Its potential uses range from improving electronic devices to creating better ways to clean water.

For centuries, gravity has been one of the most captivating and puzzling forces in the universe. Thanks to the groundbreaking work of Isaac Newton and Albert Einstein, we have a robust understanding of how gravity governs the behavior of planets, stars, and even galaxies. Yet, when we look at extreme scenarios, such as the intense gravitational fields near black holes or the mysterious quantum world, our understanding starts to break down. New research and theories, however, suggest that the key to solving these mysteries may finally be within reach.

In our daily lives, gravity is a constant presence. It’s what keeps us grounded to the Earth, dictates the orbits of planets, and ensures that satellites stay in orbit around our planet. Thanks to Einstein’s general theory of relativity, scientists have been able to make highly accurate predictions about the movement of celestial bodies, calculate tides, and even send probes to the farthest reaches of the solar system.

Yet, when gravity’s effects become more extreme—such as inside black holes or during the birth of the universe—it becomes much more difficult to model. Similarly, when we turn our attention to the quantum realm of subatomic particles, Einstein’s theory breaks down. To understand phenomena like the Big Bang or the inner workings of black holes, physicists have long known that we need a new, unified theory of gravity.

An impressive operation recently took place in CERN’s magnet test hall. The innovative cold powering system has been successfully installed in the High-Luminosity LHC (HL-LHC) Inner Triplet (IT) String test stand. This novel system comprises a long electrical transmission line, which has been specially developed to transport currents to the magnets across a wide range of temperatures. Its installation in the IT String follows on from the installation of the novel protection system and is an important milestone in the development of the HL-LHC.

The High Luminosity LHC (HL-LHC) is a major upgrade of CERN’s Large Hadron Collider (LHC), which aims to increase the number of particle collisions (luminosity) and consequently boost the amount of physics data that can be collected, allowing further discoveries to be made.

Innovative beam-focusing magnets, known as inner triplets, are a major part of this upgrade. These magnets will be deployed on both sides of the beam interaction points at the ATLAS and CMS experiments with new powering, protection and alignment systems and – just like the LHC magnets – they will operate at 1.9 K (an extremely cold temperature, colder than deep outer space).

Controlling matter at the atomic level has taken a major step forward, thanks to groundbreaking nanotechnology research by an international team of scientists led by physicists at the University of Bath.

This advancement has profound implications for fundamental scientific understanding. It is also likely to have important practical applications, such as transforming the way researchers develop new medications.

S smallest movie. In the film, single molecules, consisting of two atoms bonded together, were magnified 100-million times and positioned frame-by-frame to tell a stop-motion story on an atomic scale. +.