Menu

Blog

Archive for the ‘particle physics’ category: Page 141

Sep 23, 2023

Stanford engineers invent a solar panel that generates electricity at night

Posted by in categories: particle physics, solar power, space, sustainability

“If you can get up to a watt per square meter, it would be very attractive from a cost perspective,” Assawaworrarit says.

The invention taps into a source of energy that’s easily overlooked

The Earth is constantly receiving a tremendous amount of energy from the Sun, to the tune of 173,000 terrawatts. Clouds, particles in the atmosphere, and reflective surfaces like snow-covered mountains immediately reflect 30 percent of that energy out into space. The rest of it ends up warming the land, oceans, clouds, atmosphere, and everything else on the planet.

Sep 23, 2023

Researchers make progress in vector meson spin physics

Posted by in category: particle physics

A research team led by Prof. Wang Qun from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has made significant progress in the theoretical study of vector meson spin physics, specifically regarding the intriguing behavior of ϕ mesons generated during collisions between gold nuclei.

Their results, published in Physical Review Letters, titled “Spin Alignment of Vector Mesons in Heavy-Ion Collisions,” represent a that challenges conventional theoretical models.

Vector fields are an effective representation of strong interactions between exotic . In the hadronization phase of relativistic heavy-ion collisions, where chiral symmetry is spontaneously broken, the strongly interacting matter can be described by quarks and by the SU pseudo-Goldstone boson field surrounding the quarks.

Sep 23, 2023

Exploring the relationship between thermalization dynamics and quantum criticality in lattice gauge theories

Posted by in categories: information science, particle physics, quantum physics

Researchers from the University of Science and Technology of China(USTC) of the Chinese Academy of Sciences (CAS) have developed an ultra-cold atom quantum simulator to study the relationship between the non-equilibrium thermalization process and quantum criticality in lattice gauge field theories. The research was led by Pan Jianwei and Yuan Zhensheng, in collaboration with Zhai Hui from Tsinghua University and Yao Zhiyuan from Lanzhou University.

Their findings reveal that multi-body systems possessing gauge symmetry tend to thermalize to an equilibrium state more easily when situated in a critical region. The results were published in Physical Review Letters.

Gauge and are two foundational theories of physics. From the Maxwell’s equations of classical electromagnetism to and the Standard Model, which describe the interactions of fundamental particles, all adhere to specific gauge symmetries. On the other hand, statistical mechanics connects the microscopic states of large ensembles of particles (such as atoms and molecules) to their macroscopic statistical behaviors, based on the principle of maximum entropy proposed by Boltzmann and others. It elucidates, for instance, how the energy distribution of microscopic particles affects macroscopic quantities like pressure, volume, or temperature.

Sep 23, 2023

Cheap and efficient catalyst could boost renewable energy storage

Posted by in categories: particle physics, sustainability

Renewable energy generation, from sources like wind and solar, is rapidly growing. However, some of the energy generated needs to be stored for when weather conditions are unfavourable for wind and sun. One promising way to do this is to save the energy in the form of hydrogen, which can be stored and transported for later use.

To do this, the renewable energy is used to split water molecules into hydrogen and oxygen, with the energy stored in the hydrogen atoms. This uses platinum catalysts to spur a reaction that splits the water molecule, which is called electrolysis. However, although platinum is an excellent catalyst for this reaction, it is expensive and rare, so minimising its use is important to reduce system cost and limit platinum extraction.

Now, in a study published this week in Nature, the team have designed and tested a catalyst that uses as little platinum as possible to produce an efficient but cost-effective platform for water splitting.

Continue reading “Cheap and efficient catalyst could boost renewable energy storage” »

Sep 22, 2023

Nuclear ‘pasta’ cooked up by dead stars could unravel the secrets of stellar afterlife

Posted by in categories: particle physics, space

In the extreme hearts of neutron stars, fundamental particles are twisted into strange ‘pasta’ shapes that could reveal untold secrets about how dead stars evolve.

Sep 22, 2023

Physicists Achieve Net Energy Gain in a Fusion Reaction for the Second Time

Posted by in categories: innovation, particle physics

Fusion power has long been seen as a pipe dream, but in recent years the technology has appeared to be edging closer to reality. The second demonstration of a fusion reaction that creates more power than it uses is another important marker suggesting fusion’s time may be coming.

Generating power by smashing together atoms holds considerable promise, because the fuel is abundant, required in tiny amounts, and the reactions produce little long-lived radioactive waste and no carbon emissions. The problem is that initiating fusion typically uses much more energy than the reaction generates, making a commercial fusion plant a distant dream at present.

Last December though, scientists at the Lawrence Livermore National Laboratory made a major breakthrough when they achieved “fusion ignition” for the first time. The term refers to a fusion reaction that produces more energy than was put in and becomes self-sustaining.

Sep 20, 2023

NASA’s Parker Solar Probe flies through major coronal mass ejection — and survives to tell the tale

Posted by in categories: particle physics, space

This will be good for future deep space spaceships faring high energy ejections on their hulls.


The sun-kissing spacecraft watched as dust particles were displaced across 6 million miles (9.7 million kilometers).

Sep 20, 2023

Self-Repelling Species Still Self-Organize

Posted by in categories: bioengineering, biological, chemistry, particle physics

Many biological processes depend on chemical reactions that are localized in space and time and therefore require catalytic components that self-organize. The collective behavior of these active particles depends on their chemotactic movement—how they sense and respond to chemical gradients in the environment. Mixtures of such active catalysts generate complex reaction networks, and the process by which self-organization emerges in these networks presents a puzzle. Jaime Agudo-Canalejo of the Max Planck Institute for Dynamics and Self-Organization, Germany, and his colleagues now show that the phenomenon of self-organization depends strongly on the network topology [1]. The finding provides new insights for understanding microbiological systems and for engineering synthetic catalytic colloids.

In a biological metabolic network, catalysts convert substrates into products. The product of one catalyst species acts as the substrate for another species—and so on. Agudo-Canalejo and his team modeled a three-species system. First, building on a well-established continuum theory for catalytically active species that diffuse along chemical gradients, they showed that systems where each species responds chemotactically only to its own substrate cannot self-organize unless one species is self-attracting. Next, they developed a model that allowed species to respond to both their substrates and their products. Pair interactions between different species in this more complex model drove an instability that spread throughout the three-species system, causing the catalysts to clump together. Surprisingly, this self-organization process occurred even among particles that were individually self-repelling.

The researchers say that their discovery of the importance of network topology—which catalyst species affect and are affected by which substrates and products—could open new directions in studies of active matter, informing both origin-of-life research and the design of shape-shifting functional structures.

Sep 20, 2023

First Light for a Next-Generation Light Source

Posted by in categories: biological, chemistry, nanotechnology, particle physics, quantum physics

X-ray free-electron lasers (XFELs) first came into existence two decades ago. They have since enabled pioneering experiments that “see” both the ultrafast and the ultrasmall. Existing devices typically generate short and intense x-ray pulses at a rate of around 100 x-ray pulses per second. But one of these facilities, the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in California, is set to eclipse this pulse rate. The LCLS Collaboration has now announced “first light” for its upgraded machine, LCLS-II. When it is fully up and running, LCLS-II is expected to fire one million pulses per second, making it the world’s most powerful x-ray laser.

The LCLS-II upgrade signifies a quantum leap in the machine’s potential for discovery, says Robert Schoenlein, the LCLS’s deputy director for science. Now, rather than “demonstration” experiments on simple, model systems, scientists will be able to explore complex, real-world systems, he adds. For example, experimenters could peer into biological systems at ambient temperatures and physiological conditions, study photochemical systems and catalysts under the conditions in which they operate, and monitor nanoscale fluctuations of the electronic and magnetic correlations thought to govern the behavior of quantum materials.

The XFEL was first proposed in 1992 to tackle the challenge of building an x-ray laser. Conventional laser schemes excite large numbers of atoms into states from which they emit light. But excited states with energies corresponding to x-ray wavelengths are too short-lived to build up a sizeable excited-state population. XFELs instead rely on electrons traveling at relativistic speed through a periodic magnetic array called an undulator. Moving in a bunch, the electrons wiggle through the undulator, emitting x-ray radiation that interacts multiple times with the bunch and becomes amplified. The result is a bright x-ray beam with laser coherence.

Sep 20, 2023

Breakneck Outflows from Earth’s Most Explosive Eruption

Posted by in categories: climatology, internet, particle physics

The 2022 eruption of a partially submerged volcano near Tonga produced ejecta that hurtled at 122 kilometers per hour—as determined by timing the ensuing rupture of a seafloor cable.

On January 15, 2022, Earth experienced its most explosive volcanic eruption in 140 years at Hunga Tonga–Hunga Haʻapai, a partially submerged volcano in the Pacific Ocean near the Kingdom of Tonga’s main island. Now Michael Clare and Isobel Yeo of the UK’s National Oceanography Centre and their colleagues have determined the maximum speed of the underwater rock flows associated with this event [1]. Their study constitutes the most detailed investigation into the underwater aftermath of a powerful volcanic eruption and opens a new window onto a broad class of particle-laden flows.

The eruption at Hunga Tonga–Hunga Haʻapai hurled more than 6 km3 of debris up to a height of 57 km. When that ejecta plunged back to Earth, some of it struck the volcano’s steep underwater slopes, launching torrents of water-entrained sediment outward across the seafloor. Seven minutes after the initial eruption, Tonga lost its internet connection to the rest of the world, an event that Clare, Yeo, and their colleagues used to deduce the speed at which the entrained material moved.